RENEWABLE ENERGY IN ARMENIA

TAMARA BABAYAN Sr. Sustainable Energy Expert Yerevan, November 25, 2017

Energy Sector Overview https://youtu.be/mPkWR4POPIs?list=UUpas9ut74lXp8r0AWFsEQ9Q

Electricity Production in 2015

10,000 20% 8,036 7,710 7,750 7,798 7,433 15% 8,000 6491 14.5% 5,941 5,898 6,114 5,672 10% 6,000 14.5% 5% 8 4,000 3.7% 0% 0.5% 0<mark>.6</mark>% 2,000 0.7% -5% **L**% -10% _ 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Production of electricity, mln kWh ---Growth rate,%

Power Generation

Electricity Consumption by Customer

Source: PSRC, "Main Characteristics," 2008-2012

Heat Consumption by Customer, 2008-

Source: Energy Institute of Armenia

Primary Fuel Consumption by Customer

Gas & Heating Sector Structure

Energy Sector Overview

- Residential customers use natural gas mainly for heating
- The share of the population using natural gas for heating has increased steadily since 2003
- Gas is imported from Russia and Iran
- The PSRC regulates the transmission and distribution of gas in Armenia

Source: R2E2 & EDRC, "Assessment of Heat Supply and Heating Options in Multi-Apartment Blocks in Armenia," May 2011

Structure of the Natural Gas Sector in Armenia

SWOT for RE Development in Armenia

Regulatory framework for RE is being continuously improved

- Tariffs at cost-recovery levels with sound tariff setting methodology
- > Feed-in tariffs for small hydro, wind, biomass and biogas
- No license for RET <150 kW capacity, net metering operation</p>
- ➢Off-take guarantee of 20 years for RE
- Escrow account arrangement ensuring that all generators get paid in full and without delay
- 3-year VAT payment deferral for importers of plant and equipment with total value of more than \$0.5 million, no custom fee

Government Prioritization of Renewable Energy

- The Law on Energy (2001, amended 2016)
- The Law on Energy Saving and Renewable Energy (2004, amended 2016)
- Energy Sector Development Strategy (2005)
- Action Plan of the Ministry of Energy and Natural Resources (2007)
- National Program on Energy Saving and Renewable Energy (2007)
- Hydropower Development Strategy (2011)
- National Energy Security Concept (2013)

Summary of Renewable Energy Potential

Technology	Capacity (MW)	Generation (GWh/yr or GWh _t /yr)
Wind	795	1,640
Solar PV	835 – 1,169ª	1,735 – 2,118ª
Concentrating solar power	1,169	2,358
Distributed solar PV	93	128
Geothermal power	31 – 54	244 – 436
Landfill gas	2.5	19
Small hydropower	91	334
Pumped storage hydropower	150	1,161 - 1,362 ^b
Biogas	3.3	26
Biomass	29	228
Total (electricity) ^c	1,876 – 2,208	4,358 – 4,921
Solar thermal hot water	n/a	254
Geothermal heat pumps	n/a	4,423
Total (heat)		4,677

^a Depends on which solar PV technology is assumed to be deployed: fixed-tilt polycrystalline PV, single-axis tracking polycrystalline PV, dual-axis tracking monocrystalline concentrating PV

^b Pumped storage projects do not "generate" new renewable energy, but store energy that has been generated elsewhere. So, the pumped storage number is excluded from the total

^c Solar PV or CSP can be built in the solar "zones." Therefore, the total includes only the generating potential for one of these technologies, so as not to double count

RE Supply Curve

Area name	Capacity (MW)	Capacity Factor	Generation (GWh/yr)	
North Karakhach	80	22.8%	160	
Karakhach Pass	100	28.0%	245	
Eastern Karakhach	40	21.4%	75	
Pushkin Pass	25	22.6%	50	
Sotk Pass	50	30.9%	125	
Fontan	75	21.3%	140	
Sisian Pass	100	30.3%	265	
Total	470		1,060	

Source: USAID, "Wind Energy in Armenia: Overview of Potential and Development Perspectives," 2010

Small Hydropower

Marz	Number	Capacity Factor	Capacity (MW)	Generation (GWh/yr)
Ararat	5	41.0%	5.0	18.0
Aratsotn	4	40.8%	3.5	12.5
Gegharkunik	10	47.2%	7.7	31.8
Kotaik	3	32.1%	3.6	10.1
Lori	24	44.5%	12.9	50.4
Shirak	3	50.9%	1.1	4.8
Syunik	21	41.9%	28.1	103.2
Tavush	17	44.6%	20.8	81.4
Vayots Dzor	3	31.8%	7.9	22.0
Total/Average	90	43.2%	90.7	334.2

Sources: R2E2, "Update of the Existing Scheme for Small Hydro Power Stations of the Republic of Armenia," 2008; R2E2, "Armenian MENR_SHPP pre-feasibility studies_01.04.13", 2013

Distributed Solar

- Estimated rooftop area available in Armenia and assumed half of the total area was developable
- Assumed 20,200 sq. m of rooftop area is needed per MW of solar, assuming fixed-tilt, polycrystalline panels
- Less optimal positioning on rooftops causes a lower CF compared with utility-scale solar
- Capacity factors are rough estimates to show how systems in different Marzes will perform relative to each other
- Actual capacity factors for distributed systems will vary significantly from system to system as they can not be easily optimized as utility-scale ground-mounted systems

Marz	Total Estimated Roof Area (sq. m)	Potential (MWac)	CF (AC)	Generation (GWh/yr)
Yerevan	7,716,937	191	16%	268
Aragatsotn	4,039,218	100	16%	140
Ararat	6,075,163	150	16%	211
Armavir	5,523,874	137	16%	192
Gegharquniq	5,246,894	130	17%	193
Lori	6,319,836	156	13%	178
Kotayq	3,837,887	95	16%	133
Shirak	5,475,094	136	17%	202
Syniq	2,512,322	62	16%	87
Vayots Dzor	1,354,618	34	17%	50
Tavush	3,599,381	89	16%	125
Total/Average	51,719,336	1,280	16%	1,779

Pumped Storage Hydropower

- Three potential pumped storage hydropower plants have been identified in Armenia
- Note that pumped storage does not generate new energy, but stores and releases energy from other generation sources, losing some of the original energy in the process
- As a result, energy from pumped storage is only as "renewable" as the energy that it stores, and it does not generate new renewable energy

Site Name	Generating Capacity (MW)	Estimated Energy Storage Capacity (MWh)
Aghbyurak	150	1,161
Tolors	150	1,254
Shamb	150	1,362

Sources: R2E2, "Assessment of Hydro Potential of Peak Capacities Generation for Armenian and Regional Markets," 2007 and Armenian Scientific Energy Research Institute of Energy analysis

WWTP Biogas-to-Power

- Assumed that the existing Aeratsia WWTP in Yerevan would be upgraded and anaerobic digesters would be installed at the facility
- Assumed that the wastewater flow at the facility would increase to 125 million gallons per day by 2025
- Based on this expected flow, a 3 MW cogeneration power plant could be installed at the site

Sources: SWECO, "Yerevan WWTP, Armenia," 2005; OECD, "Financing Strategy for Urban Wastewater Collection and Treatment Infrastructure in Armenia: Final Report," 2004; and Black & Veatch analysis.

Agricultural Biogas-to-Power

- Six small-scale anaerobic digester biogas-to-power projects were identified on farms in Armenia in a 2010 study by the GEF/UNDP
- It was determined that three of the six projects were determined to be good candidates for biogas-to-power projects: Araks, Arzni and Armavir
- These three projects are assessed and considered to be the "achievable" agricultural biomass potential in Armenia

Site Name	Capacity (MW)	Capacity Factor*	Generation (GWh/yr)
Araks Trchnafabrika CJSC	1.4	90.0%	11
Arzni Pedigree PBS OJSC	0.8	90.0%	6
Armavir Poultry Farm	1.1	90.0%	9
Getamech Poultry Plant Ltd.	2.2	90.0%	18
Yerevan Poultry Farm	0.8	90.0%	6
Ashtarak Dzu LLC	0.7	90.0%	5
Total	7.0		55

= Projects considered achievable for this analysis

Source: GEF/UNDP, "Final Report on Assessment of GHG Emissions Mitigation Potential in Animal Farming Sector of the Republic of Armenia, July 2010.

Landfill Gas-to-Power

Potential for LFG-to-Power in Armenia

- The City of Yerevan is currently studying the potential for ٠ upgrading the Nubarashen landfill to receive waste from other municipalities. This might make a landfill gas-to-power project technically feasible a the Nubarashen site.
- For this study, it was assumed that future Nubarashen ٠ landfill section B expansion could support a 2.5 MW LFG plant.

History of LFG-to-Power in Armenia

- A single, 1.5 MW landfill gas-to-power (LFG) project was ٠ proposed at the Nubarashen landfill by the Shimuzu corporation
- The portion of the landfill studied for the project produced ٠ much less gas than initially expected, and the project was deemed technically infeasible. A methane flare plant was installed instead.

Figure 1: Site overview

Figure 2: Flare plant

Sources: CDM Executive Board, "3rd Monitoring Report: Nubarashen Landfill Gas Capture and Power Generation Project in Yerevan," June 2012; Personal communication with Head of Investment and Development Projects Department of Yerevan Municipality on June 6, 2013; Personal communication with Artem Kharazyan on June 26, 2013

Biomass

- Biomass power generation potential assessed for both woody biomass and agricultural residues
- Woody biomass potential estimated based on the estimated amount of forestry residues available from fallen wood and sanitary cuttings
 - Forestry residues assumed to be sufficient to support a 4 MW biomass plant
- Agricultural biomass potential estimated based on the estimated amount of grain residues available
 - Grain residues assumed to be sufficient to support a 25 MW biomass plant

Sources: Forest Law Enforcement and Governance Report, 2011; Agricultural data from the Food and Agriculture Organization of the United Nations, 2000;

Geothermal Power

- Three potential geothermal power sites have been identified, but level of knowledge about potential of these sites is different
- Karkar site has been comprehensively assessed through surface studies. Drilling pending to confirm the resource.
- The existence of geothermal resources at the other two sites is highly uncertain without further exploration

Site Name	Capacity (MW)	Capacity Factor	Generation (GWh/yr)
Karkar	6 – 29	84 – 96	47 - 239
Potential site on Armenian- Georgian border	25	90	197
Total	31 – 54		244 – 436

Sources: GEF/World Bank, "Jermaghbyur Geothermal Project Feasibility Study Final Report," 2006; Hankinson, Denzel, "Economic and Financial Appraisal of the Potential Geothermal Power Plant at Karkar Final Report," November 2012; Personal communication with Dr. Arkadi Karakhanyan on June 6, 2013

Renewable Heat

 Total hot water and space heating load of residential and 		Space Heating (GWht/yr)	Water Heating (GWht/yr)	Total (GWht/yr)
commercial buildings in Armenia was estimated	Apartments	2,309	209	2,518
• The potential for solar thermal hot water systems and geothermal heat	Houses	1,691	214	1,905
pumps to meet this heat load was assesed	TOTAL	4,000	423	4,423

Geothermal Exploratory Drilling Project

Geothermal developments in the Period of 2009 - 2012 with support of the WB Group

Main surveys were done in 2 selected geothermal sites - Karkar and Gridzor

The studies were implemented in two phases, and the realization if the second phase depended on the findings of the first one.

Phase Ia – field geological surveys and 2D magnetotelluric (MT) sounding;

Phase Ib - interpretation of the data from Phase *Ia and* choice of one site for the 3D magnetotelluric (MT) sounding;

Phase IIa - three-dimensional (3D) magnetotelluric (MT) sounding;

Phase IIb – interpretation of the data from Phase IIa to enable "drill/not drill" decision.

Karkar July 2016

Solar Power

www.globalsolaratlas.info

Trainings at Merdzavan station

3. First Round Projects (1/2) - Masrik-1 (47 MW)

•The envisaged technology is **Mono or Poly crystalline** PV modules in **fixed structures** with connection to **central PV inverters** to achieve a total capacity of **47MW**.

•The plant will be connected to the **110 kV grid** through an output double transformer step-up substation. A **double 10 km electrical line** will be installed to connect the plant to the grid.

•A meteorological station has been installed in the area to collect ground data. Current satellite estimations result in a GHI of **1.770 kWh/m² per year**.

The Government can successfully scale up development of sustainable energy because...

- Necessary legal, regulatory and institutional framework is ready
- Private sector is interested to invest in renewable energy sector (more than 170 private power generation plants)
- Financial market is interested and capable in lending for RE investments
- The scientific community and academia remain committed and interested in geothermal and solar technologies
- Strong ecological society requires the scale up of sustainable energy
- The Government has successfully implemented several donorfunded projects in the renewable energy sector, including the WB, EBRD, KfW.

The SREP support will help us to have a success story for scaling up identified RE technologies and making Armenia more energy secure

Feasible Potential of Renewable Resources in Armenia

Map of Surface Hydrology (rivers, lakes, reservoirs)

Meters 100000

Hydro Resources 250-300MW

Wind resources 300-500MW

Solar resourc e >1000MW

•Geotherma resources •25-50 MW

Forests-10% Gas-0% Oil-0% Coal-0%

 Renewable is not only energy security but also National security for my country Map of Forest Areas

Meters

RENEWABLE ENERGY IN ARMENIA

TAMARA BABAYAN Sr. Sustainable Energy Expert Yerevan, November 25, 2017