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Abstract 

The highlands of Armenia are a prime example for mountainous landscapes featuring 

smallholder-based, dispersed and multifunctional land use. These areas often have high nature 

value and provide various ecosystem services. Yet, detailed and accurate mapping efforts with 

satellite imagery are facing difficulties due to the spatial and spectral complexity of intercepted 

landscapes. This study aims at exploring the potentials and limitations of mapping smallholder 

farming with an increased thematic detail in a 4726 km2 study area in Armenia using Google Earth 

Engine (GEE). For this purpose, a coherent classification catalogue was developed featuring 11 

land use and land cover (LULC) classes in total and six agricultural target classes. The proposed 

classification system follows a classic pixel-based approach. The input data comprises intra-

annual and multi-temporal optical imagery as well as other multisource data, all available within 

GEE. The data was processed to construct composites with filtered image spectra and fixed 

temporal bins. Different input datasets were created to assess the added value for map 

predictions through the multisource data. The input datasets were classified with random forest 

and acquired training data. For classification the study area was stratified due to GEE quota 

limitations. The map predictions were assessed through an accuracy assessment supported by a 

comprehensive validation sample. Based on the results, a “good choice” dataset was constructed 

that achieved overall accuracies of 76% and 82% for the two sub-regions. User’s accuracies 

ranging from 57% to 88% indicate mapping constraints of the highly collinear agricultural target 

classes. Compared to a baseline dataset with optical data only, an added value of the multisource 

data could be observed. The improvements are however limited, suggesting other accuracy 

limitations such as spatial and temporal resolution. In respect to this, the mapping approach can 

be further improved without sacrificing its simplicity and practicality. The approach shows 

potential regarding the transferability but also faces limitations regarding the workload for 

training data. The produced map delivers accurate and detailed information of the extent and the 

distribution of the LULC classes. Such data is of great relevance for many current land-use 

challenges in Armenia. 
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1. Introduction 

Agricultural land use in mountainous regions is often smallholder based and rather complex 

regarding the spatial structure resulting in limitations for mapping efforts. Most progress in land 

use and land cover (LULC) mapping has been made so far for large scale agriculture areas. It 

remains challenging to accurately map small scale, dispersed and multifunctional land use in 

intercepted landscapes. Armenia is a prime example of such mountainous regions with complex 

agricultural and semi-natural landscapes. The small and landlocked country in the Caucasus 

region exhibits a rich biodiversity and a long history of agricultural land use (CBD, 2014). 

Agriculture in a mountainous environment is often restricted due to climatic or topographic 

factors. These limitations are usually overcome by the local population through intelligent and 

sustainable adaptations of the agricultural production systems. Agriculture in Armenia and other 

mountainous regions is thus traditionally characterized by extensive management systems within 

a subsistence-based family farm setting (Wymann von Dach et al., 2013; FAO, 2020b). The 

resulting closely intertwined and dynamic social-ecological systems shaped the mountainous 

agricultural landscapes for centuries (Plieninger and Bieling, 2012).  

1.1. Nature value of mountainous farming landscapes 

Contrasting to the inherent low productivity, mountainous farming regions often exhibit a 

high nature value and feature attractive cultural landscapes. Besides the primary functions of 

producing food and fibre, these areas are usually rich in natural or semi-natural vegetation and 

are able to support species and habitats of conservation value which specifically depend on the 

low-intensity land use (Lomba et al., 2020). Within the associated social-ecological systems a 

broad range of ecosystem services can be provided for the human well-being. Supporting and 

regulating services include nutrient cycling, primary production, soil formation, maintenance of 

genetic resources, pollination, biological control and storage and purification of water as well as 

climate, soil erosion and flood regulation. Cultural services such as recreation, sense of place and 

maintenance of cultural heritage and scenic landscapes are often undervalued but particularly 

important for Armenia and many mountainous regions. Mountainous farming landscapes 

experience a recent trend of reduced resilience due to different socio-economic and institutional 

changes such as rural depopulation, termination of subsidies or evolving land-use conflicts. This 



 

 2 

often results in abandonment or afforestation of marginal farming areas and intensification of 

the most productive areas causing a widespread decline of extensive management systems 

(Prishchepov et al., 2013; Wymann von Dach et al., 2013; Lomba et al., 2015; Buchner et al., 

2020). 

The nature value of farmland is a concept adopted in the Common Agricultural Policy, the 

EU legislation on agriculture. Based on a conceptualization of the nature value of farmland the 

extent of farmland with a high nature value is monitored in a spatial explicit way using different 

data sources including CORINE land cover data as well as farming and environmental data (Lomba 

et al., 2014). While the assessment and monitoring of the nature value of farmland in the EU is 

far from perfect, such instruments are still largely absent in many parts of the world including 

Armenia. The assessment of the nature value of farmland in Armenia may however enable to 

characterize areas with conservation value and direct financial support to those agriculture-

dominated landscapes where high nature value is given and dependent on the continuation of 

low-intensity farming systems (Lomba et al., 2015). 

1.2. Post-soviet smallholder agriculture in Armenia 

There is comprehensive evidence that the Armenian Highlands have an agricultural history 

dating back thousands of years (Avetisyan, 2010; Wilkinson et al., 2012). As a former Soviet 

country, agriculture in Armenia experienced drastic changes during the recent past. The 

establishment of the Soviet power in 1920 resulted in profound structural changes of the 

traditional subsistence-based agriculture. As in the rest of the Soviet Union, farm households 

were deprived of private property, forced to collectivize and state ownership was established. 

Consequently, large scale irrigation, land improvement and orchard planting programs where 

implemented which allowed the food and agriculture sector to become one of the most important 

pillars of Armenia’s economy (Avetisyan, 2010). 

After the Armenian independence in 1991, the role of the agricultural sector within the 

country’s economy increased to more than 30% of the gross domestic product (GDP) and more 

than 40% of total employment compared to a contribution of less than 20% of each prior to 

independence. This development was linked to strong individualized land rights and dramatical 

shift to individual farming to ensure food security needs of the population confronted with 
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uncertainties during the first transition phase towards an independent economy as well as the 

associated collapse of non-agricultural sectors in the early 1990s (Rozelle and Swinnen, 2004; 

Millns, 2013). With the stabilisation of the economy, the agricultural share of the GDP dropped 

again resulting in a contribution of around 18% of the country’s GDP and 35% of total workforce 

(state: 2018) (World Food Programme, 2019). The 2008 global financial crisis heavily impacted 

the experienced rapid economic growth and poverty mitigation of the early post-independence 

period. As a result, rural poverty has remained high, ranging around 35% of the population in 

2012 and 29% in 2019. Poverty and food insecurity are particularly an issue for the rural 

population. Women and the youth are also overrepresented amongst the poor (Millns, 2013; 

World Food Programme, 2019). 

Today, the agricultural sector in Armenia is predominantly smallholder-based, consisting of 

360,000 held properties with an average size of 1.5 ha (World Food Programme, 2019). 42% of 

the smallholder farms are smaller than 0.5 ha (FAO, 2020b). 88% of the farms are smaller than 2 

ha and cover 77% of the total land area. The farm sizes are varying between 0.61 ha in the Ararat 

valley to 3 ha in the uplands (Millns, 2013). On average, each farmer owns three parcels of land, 

of which one is irrigated and two are non-irrigated. Further, 15% of the farmers cultivate land that 

has been leased with an average size of 3.2 ha. This fragmented and subsistence-based profile of 

the sector is an immediate result of the disintegration of the Soviet Union and the associated 

privatization. During the early 1990s, 869 large collective and State farms with 147,000 separate 

parcels were privatized to create 338,000 farms and rural households with more than 1.2 million 

relatively small plots of land at an unprecedented speed (Avetisyan, 2010; FAO, 2020b). 

The promptness and uncoordinated character of this process led to partial resentments and 

conflicts arising over the allocation of water rights and the distribution of fundamental materials 

and equipment (Curtis and Library of Congress, 1995; Millns, 2013). Following the privatization, 

livestock numbers declined, the total area of irrigated lands decreased by half and the use of 

fertilizers decreased by two-thirds (Worldbank, 2012). The distribution of land was rather chaotic 

and followed a proportional scheme where the land of collective farms was distributed among 

community members. Communities with higher population density received smaller parcels, 

resulting in highly fragmented land ownership. The land each community member received could 
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comprise a large number of non-contiguous parcels often with long distance from the homestead 

to the parcels and between the parcels (Hartvigsen, 2014; Buchner et al., 2020). 

Armenia is a land-scarce country, yet around 50% of both arable land and former pastures 

across Armenia are not cultivated or managed and one third of the farmers with agricultural 

holdings do not cultivate their land at all (Millns, 2013; Urutyan, 2020). Besides land 

fragmentation, there are several challenges smallholders in Armenia are facing today that 

contribute to ineffective farmland use. Such challenges are amongst others, the lack of farming 

and entrepreneur skills, missing access to information and markets, aging rural population and 

out-migration of youth, over-indebtedness, unwillingness to cooperate and limited access to 

mechanization and technology (Millns, 2013; FAO, 2020a; Urutyan, 2020). Over-indebtedness 

seems to become an increasing problem for many of the smallholders in rural areas. Urutyan 

(2020) emphasizes that there might be an issue regarding the inverse trends in credits to 

agriculture and effective agricultural land use or agricultural outputs (see figure 1). Smallholders 

are borrowing more and more money to pay off existing depts while abandonment of the 

fragmented agricultural land increases. 

 

Figure 1 Credits to agriculture in billion Armenian Dram (AMD) and use of total arable land (%). Whereas the credits are constantly 
risings the use of arable land decreases sharply since 2016 (Urutyan, 2020). 

The situation of smallholders in Armenia as “land-users lost in transition” and the associated 

issue of ineffective use of farmland poses risks for both mountain ecosystems, being vulnerable 

to changes in land use as well as rural livelihoods facing challenges regarding perpetuating 

poverty and unemployment. As a result, losses in biodiversity and decreased resilience of the 

socio-ecological systems as well as alterations in the ability of ecosystems to provide critical goods 

and services largely limit sustainable development of human and natural resources (Muller et al., 

2009; Theissen et al., 2019). Livestock farming is for example crucial for the food production in 
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mountainous regions of the northern hemisphere. Grassland management has thus shaped the 

biodiversity and floristic composition in those cultural landscapes for centuries. Land-use change, 

due to structural changes in agriculture or socio-economic shifts, often leads to deterioration of 

ecosystem functioning and the resilience of these landscapes (Theissen et al., 2019). 

There are various efforts in Armenia towards reaching the Sustainable Development Goals 

including conservation of terrestrial and in particular mountainous ecosystems, sustainable 

agriculture, food-security and alleviation of rural poverty and climate change mitigation (Republic 

of Armenia, 2018). Policies and programs for afforestation, land consolidation, sustainable 

intensification of agriculture and wildlife conservation are however often conflicting and require 

land-use trade-offs (Foley et al., 2005). Besides afforestation and wildlife conservation, there are 

priority interests in restructuring rural livelihoods and smallholder agriculture to provide 

circumstances that allow a sustainable intensification and gender equality among land users 

(Republic of Armenia, 2018; World Food Programme, 2019). 

Although much is at stake, there is a lack of information and spatial data related to post-

soviet smallholder agriculture in Armenia which is hindering efforts. In particular fine-scale land-

use maps are often unavailable or of unknown reliability (Kuemmerle et al., 2009). The data gap 

regarding detailed spatial-temporal information of LULC is limiting the success of endeavours 

towards sustainable development. Policy and decision makers are often “flying blind” without 

means to understand the holistic and complex character of food and agricultural production 

systems in mountainous landscapes (Urutyan, 2020). 

1.3. Remote sensing in land system science 

Satellite images and other remote sensing data are valuable means to feasibly classify, map 

and monitor LULC over large areas across the globe. In the field of land system science, 

agricultural land use and land-use change is increasingly explored with remote sensing due to 

innovations regarding sensors and data processing capabilities in recent years. Besides the 

classification of cropping systems and practices such as crop type, cropping intensity or 

management regimes, the change mapping of agricultural land use has been investigated 

intensively. In the post-soviet context, agricultural land-use dynamics have been explored across 

Kazakhstan (Kraemer et al., 2015), Russia, Belarus, Lithuania, Latvia and Poland (Alcantara et al., 
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2013), Slovakia and Romania (Kuemmerle et al., 2009; Griffiths et al., 2013) and recently also 

across the Caucasus (Yin et al., 2018; Buchner et al., 2020). 

LULC maps with a high thematic detail of spectrally narrow agricultural classes are also 

increasingly explored as in case studies of agricultural land use in Germany (Griffiths, Nendel and 

Hostert, 2019), the Brazilian cerrado (Bendini et al., 2019), Australia (Brinkhoff, Vardanega and 

Robson, 2020) or Belgium (Van Tricht et al., 2018). Challenges in remote sensing regarding 

heterogenous landscapes and complex small-scale subsistence farming also received increased 

attention in recent years (Senf et al., 2015; Lebourgeois et al., 2017). Detailed mapping of 

smallholder-based farming areas remains challenging due to various factors including: high spatial 

collinearity amongst land-use classes, small patch sizes and fragmented distribution of the fields 

as well as low intensities of the land-use signals (Lebourgeois et al., 2017).  

As many technological fields, remote sensing experienced an accelerated development 

during the last decade (Splinter, Harley and Turner, 2018; Zhu et al., 2018). The main quality 

properties of (optical) spaceborne remote sensing data improved substantially, including: (1) 

Spatial resolution (i.e. the size of the acquisition unit/ pixel); (2) Spectral resolution (i.e. the 

number of bands with certain content of information such as spectra or acquisition mode); (3) 

Temporal resolution (i.e. the revisit time or the time between two consecutive acquisitions of the 

same ground area) (Dash and Ogutu, 2015). These properties are important factors for a detailed 

spatial assessment of smallholder agriculture in heterogenous mountainous landscapes 

(Lebourgeois et al., 2017). 

The spatial resolution directly limits mapping efforts of small agricultural plots as the 

smallest minimum mapping unit needs to be at least of a similar size or smaller. Optical sensors 

like the Sentinel-2 multi-spectral instrument (MSI) have high potential for mapping agricultural 

land use in smallholder dominated landscapes (Lebourgeois et al., 2017). Besides the moderate 

to high spatial resolution of 10–60 m, this mainly arises from the spectral and temporal resolution 

with 13 bands and a revisit time of five days in the constellation. Although high to very high spatial 

resolution sensors such as Rapid-Eye or Worldview are also recognized as useful for mapping 

smallholder farming, the lower spectral resolution with only three to four bands in the visible 

spectrum (RGB) and near infrared (NIR) can limit a detailed LULC classification and often require 

more complex deep learning applications due to the high spatial complexity (Du et al., 2019). 
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The temporal resolution is of particular significance for multi-temporal analysis of 

vegetation phenology, which is widely used to classify different crops or agricultural management 

regimes (Bendini et al., 2019; Rufin et al., 2019). The multi-temporal images can be used to display 

phenological changes and differences between vegetation and crop types. Temporal gaps due to 

cloud cover can be overcome and the cost of computation reduced by temporal binning of intra-

annual image time series, where all available observations within a defined time period (e.g. a 

month or ten days) are used to create quality composites (e.g. median composites). The temporal 

resolution of Sentinel-2 can be further improved due to the interoperability with Landsat-8 

operational land imager. This allows shorter temporal bins to adequately reflect the phenological 

differences between LULC classes. 

In comparison to single images or composites, multi-temporal and -spectral image analysis 

usually requires appropriate computational power given the large number of bands and image 

dates. This is especially the case for the classification of vegetation, cropping practices and 

intensities, where multiple approaches to capture the phenology using multi-temporal and -

spectral data have been explored within the remote sensing community (Senf et al., 2015; 

Griffiths, Nendel and Hostert, 2019; M. Zhang et al., 2019). Spectral indices and transformations 

are means to condense the amount of multi-spectral data and derive indicators for different 

ground features. Indices for vegetation features such as the Normalized Difference Vegetation 

Index (NDVI) or the Tasselled Cap metrics are widely acknowledged to map LULC from national to 

continental scales (Teluguntla et al., 2018; Rufin et al., 2019). The spectral derivates are simple 

and effective algorithms for quantitative and qualitative evaluations and can enhance 

classification due to their ability to detect different land cover types (e.g. vegetation or urban 

structures) (Xue and Su, 2017). The mapping of permanent crops in the Maipo valley in Chile 

showed, that the utilization of all the reflectance bands from multi-spectral imagery improves 

accuracy over using a small number of normalized difference indices (NDIs). However, when 

combining many NDIs, best accuracy results can be achieved (Peña and Brenning, 2015; Peña, 

Liao and Brenning, 2017). Yet, the dimensionality of the imagery data directly affects the 

classification outcome and redundancies within the data should be minimized (Belgiu and Drăgu, 

2016). 



 

 8 

Several studies showed beneficial effects of combining optical imagery and imagery 

acquired by active synthetic aperture radar (SAR) sensors (Stefanski et al., 2014; Van Tricht et al., 

2018; Mahdianpari et al., 2019; Brinkhoff, Vardanega and Robson, 2020). Besides cropland and 

wetland mapping, this is in particular the case for scattered woody vegetation (Baumann et al., 

2018; W. Zhang et al., 2019). Due to the independence from weather conditions, a combination 

with SAR data is especially useful in mountainous or tropical regions with consistent cloud cover 

over longer periods (Zhang et al., 2020). 

Ancillary continuous data such as topography metrics derived from digital elevation models, 

precipitation, soil moisture and nighttime lights are also increasingly recognized to improve LULC 

classifications or change detection (Lebourgeois et al., 2017; Chen et al., 2018; Yuan et al., 2019; 

Gumma et al., 2020). There is evidence that specifically in mountainous areas with complex 

terrain, the use of topographic data can enhance mapping accuracies (Lebourgeois et al., 2017; 

Adepoju and Adelabu, 2020). Stable nighttime lights data is typically used for socio-economic 

activities and the detection of urban areas or rural settlements. Texture metrics quantitatively 

describe relationships of digital number values of neighbouring pixels and can be a mean to aid 

the classification of LULC. Since spatial relationships are often uncorrelated with the spectral data 

of a given class, the inclusion of specific texture metrics may improve classification accuracies 

(Hall-Beyer, 2017; Numbisi, Van Coillie and De Wulf, 2018). 

These novel developments exhibit great potential for a detailed mapping of smallholder 

agriculture within a heterogenous mountainous landscape, but require the processing of a vast 

amount of multi-temporal and -spectral remote sensing data. Within recent years, the increasing 

availability of large-volume open access remote sensing data and the development of advanced 

machine learning applications have been integrated with powerful cloud computing resources 

such as Amazon’s Web Services and Google Cloud. GEE is addressing the issues related to big data 

of earth observation. GEE is an open access, cloud-based platform for parallel processing of 

petabyte-scale data. It is based on a client-server programming model allowing batch processing 

using JavaScript on a dedicated application programming interface (Gorelick et al., 2017; Kumar 

and Mutanga, 2018). GEE hosts a large pool of satellite imagery and geospatial datasets, and 

allows web-based algorithm development and results visualization in a reasonable processing 

time. Besides the computing and storage capacity, a number of well-known machine learning 
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algorithms have been implemented and linkages to deep learning applications such as 

TensorFlow have been established (Tamiminia et al., 2020).  

The development of advanced machine learning tools further eases the handling of large 

multi-temporal and -spectral remote sensing data. Traditional classifiers insufficiently manipulate 

complex and high-dimensional data and depend on the statistical distribution of the input data. 

Random Forest (RF) is a widely used advanced machine learning algorithm that can handle large 

amounts of uncorrelated data and deliver high classification accuracies across applications. RF is 

less sensitive to noise and overfitting and relatively easy to execute given the low number of 

parameters compared with other machine learning algorithms such as Support Vector Machine 

(Mahdianpari et al., 2019). 

1.4. Study objective, framework & research questions 

This study aims to explore the potential and limitations of mapping smallholder farming 

with an increased thematic detail in a heterogenous mountainous landscape in Armenia. The 

agricultural land use with six target classes is complemented by other semi-natural or natural and 

artificial classes, resulting in a total of 11 LULC classes within the study region. For a detailed 

typology of the classes see section 2.2. The classification approach follows the classic concept of 

classifying all classes simultaneously as opposed to a hierarchical approach with several 

classification stages1 or a sequential approach where one class at a time is classified against a 

grouped class. With the classic approach, limitations regarding class specific confusion and 

misclassification can be accessed in great detail. In contrast, hierarchical and sequential 

approaches are more time consuming and the assessment of specific class confusion is limited by 

grouped classes and the use of masks. Finally, the proposed approach does not include an “other” 

class, resulting in a cohesive LULC map for the entire study region. The classification approach in 

this study is exclusively based on open access data and open-source software for processing 

Including GEE, the R Project for Statistical Computing and QGIS of the Open Source Geospatial 

Foundation. 

 
1 i.e. first classifying broad classes like cropland and woody vegetation and using these produced mask layers to 
subsequently classify different types of cropland or woody vegetation. 
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Due to the SARS-CoV-2 pandemic, an exploration of the smallholder farming systems and a 

collection of references data in the field was not possible. The proposed classification framework 

is therefore based entirely on remotely acquired training and validation data. The assessment of 

class membership within the sampling schemes is based solely on visual interpretation of multi-

temporal very high spatial resolution images (VHSR) and other available spatial-temporal data. 

For a detailed explanation of this assessment framework of class membership see section 2.7 and 

Appendices II-IV. 

The LULC is classified with RF machine learning algorithm due to its practicality and high 

mapping accuracies. The classification approach is based on intra-annual multi-temporal remote 

sensing data. Multi-spectral optical data of the Sentinel-2 constellation is used as primary 

classification input. The reflectance bands from multi-spectral imagery are used to derive several 

NDIs and spectral transformations. SAR data of the Sentinel-1 constellation and ancillary data, 

namely topography metrics, texture metrics and nighttime lights are explored regarding the 

added value for the classification outcome. Based on this data pool, different datasets are 

constructed in order to assess the differences in the RF model accuracies of the associated 

datasets. This is done to evaluate the use of the multisource data for mapping smallholder 

agriculture within the study region in the Armenian highlands. A detailed description of this 

approach is provided in sections 2.3 and 2.5.  

McRoberts (2011) emphasizes that maps are usually nothing more than pretty pictures 

without a rigorous accuracy assessment and indication of the precision of these estimates. In 

order to produce meaningful model predictions this study followed the good practice 

recommendations for accuracy and area assessment as provided by Olofsson et al. (2014). 

Accordingly, the sampling of validation data used to derive the map accuracy is implemented with 

statistical inference as scientific support for a generalization from the sample data to the 

population parameters. For a detailed description of the sampling procedure and accuracy 

assessment see section 2.7 and 2.8. 

The main objective of this study is to estimate the extent and distribution of the LULC classes 

in the study region. In line with this, the mapping potential and limitations are aimed to be 

explored. Different remote sensing data types are assessed regarding the added value for the 

LULC classification. The central research question of this study thus is: “How accurate and how 
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detailed is the proposed mapping approach of smallholder agriculture in a complex mountainous 

landscape?” This includes the research sub-question: “What are the effects on map predictions 

when including multisource data?” Within this research framework other relevant questions 

include: 

• What is the effect of combining optical and SAR data? 

• What is the effect of using spectral derivates (NDIs/spectral transformations)? 

• What is the effect of including ancillary data such as texture metrics, topography 

metrics or nighttime lights? 

Based on the results of the accuracy assessment for the different datasets these questions 

are evaluated in the discussion and potentials and limitations are determined. This includes 

considerations regarding the depth of the class typology as well as general characteristics of the 

classification system such as practicality of the classification approach, sufficiency of the spatial, 

temporal and spectral resolution, transferability and ease of training and validation data 

collection. Other important points of discussion concern the reliability of LULC mapping without 

ground truth data and interpreter bias as well as the overall performance in the light of other 

similar mapping efforts. 
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2. Materials and methods 

2.1. Study region 

The study region in the south of Armenia comprises the entire administrative district of 

Vayots Dzor with the sub-districts Yeghegnadzor and Vayk. This area is extended by the northern 

part of Syunik with the sub-districts Sisian and Goris (see figure 2). In total the study region covers 

an area of 4,725.8 km2. This chapter provides an overview of the physical geography and 

agricultural land use of the study area. This includes a description the mountain climate and 

vegetation zones as well as the associated biodiversity and environmental threats through 

agriculture. Further focus is put on the agricultural land-use systems and the smallholder 

livelihoods.  

 
Figure 2 Overview map and location of the study region in the Armenian Highlands. The study region is depicted in 
light red with the four sub-regional districts (AMD2) named according to their municipal capitals. The inset map is 
showing the location of the Caucasus Ecoregion (green) and the map section is corresponding to the red square. As 
for all maps the projection is UTM WGS84 (Data: OSM Roads; Shapefiles AUA; SRTM DEM; EC World Countries; source: 
own illustration). 
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Located within the Zangezur mountain ridge of the lesser Caucasus, the region has a mean 

altitude of 2,125 meters above sea level (m.a.s.l). With a minimum altitude of around 700 m in 

the main valleys and a maximum altitude of approximately 3,500 m on the mountain peaks the 

landscape is structured by the elevation and comprises heterogenous orographic landscape with 

deep gorges and canyons, volcanic plateaus and steep mountain ridges. The topographic 

heterogeneity is responsible for a pronounced climatic variability resulting in a high diversity of 

plant communities (figure 3). Besides the orographic climatic variability, there is a main line of 

separation regarding the distribution of the annual precipitation. Areas of similar elevation 

receive double annual precipitation in Synuik (Goris, 627mm) compared to Vayots Dzor 

(Yeghegnadzor, 358mm) (CLIMATE-DATA.ORG, no date).  

Due to the continental arid conditions and the high elevation, natural grassland ecosystems 

such as steppe grassland, meadow steppe as well as subalpine and alpine meadows dominate. 

The lower mountain belt (375-1200 m.a.s.l.) in Vayots Dzor exhibits semi-deserts with 

gypsophilous and halophilous plant communities which show specific adaptations to the arid 

 
 

Figure 3 Thematic map of the study region illustrating the climatic and vegetative zonation caused by the orographic 
setting. Whereas in Vayots Dzor the climate is arid featuring semi-desert vegetation and dry forests the area around 
Goris is receiving considerably higher precipitation is characterized by deciduous forest and steppe vegetation. With 
increasing altitude, the steppe grassland is changing to meadow-stepped and (sub-) alpine meadows. (Data: AUA 
Shapefiles; source: own illustration). 
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environment. The semi-desert vegetation is characterised by tomillares (i.e. oil-bearing 

plants of the family Lamiaceae) and tragacanths communities, in which cushion-shaped shrubs 

dominate. Typical species include wormwood (Artemisia fragrans) (figure 4, c) and thyme 

(Thymus caucasius) (Fayvush, Aleksanyan and Bussmann, 2016; Fayvush and Aleksanyan, 2020).  

The middle and upper mountain belts (1,200–2,200 m) are characterized by different types 

of steppe and forest vegetation, meadow-steppes, shrub steppes and tragacanth vegetation. The 

forest cover in the area is low and restricted to the lower and middle mountain belts. The 

timberline is at 2,300–2,400 m. The forests in the study region include arid open woodlands in 

Vayots Dzor as well as oak, hornbeam forests and open coniferous juniper forests in Syunik. Arid 

open woodlands consist of both coniferous (juniper woodlands) and deciduous species and 

exhibit a high proportion of endemic species (figure 4, a, b, e & f). 

 
 

Figure 4 Mountainous landscapes in the study region with specific characteristic plant species composition. a: arid 
woodland landscape around the reservoir of Herher (Herher reservoir: low water season, 2012) b: sedgy arid 
woodland close to Jermuk (Gorbunov, no date); c: wormwood (Artemisia fragrans) (Batsatsashvili et al., 2016); d: 
differences in the grassland community for south- and north-facing slopes (Aleksanyan et al., 2020); e: Artavan 
forest with mixed species (Artavan forest, no date); f: wild almond (Amygdalus fenzliana) (Gulsoy, 2019); g-i: 
feathergrass steppe landscape (g); subalpine meadows (h); Anemone fasciculata (i) (Asatryan, 2017)). 
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Mountain steppe grassland is the most abundant type of vegetation in the study area 

occupying all the volcanic plateaus and treeless mountain slopes of the middle mountain belt. 

One of the most common forms is the feather-grass steppe (figure 4, g). Other forms include 

koleria grass and wheat grass. The specific community composition depends on the topography 

and exposition of the slopes as well as the given soil conditions (figure 4, d). Steppes are the most 

diverse type of vegetation and feature the greatest proportion of endemic species in Armenia 

(Fayvush and Aleksanyan, 2020). In a recent study the biodiversity of Armenian grasslands was 

assessed with a standardized sampling and found to be outstandingly high with a vascular plant 

richness only minimally below the highest record in Transylvania (Aleksanyan et al., 2020). In the 

upper montane belt, there is a relatively narrow belt of meadow-steppes, in which both steppe 

and meadow vegetation are associated (Fayvush and Aleksanyan, 2020). 

The upland zone (≥2,200 m) is occupied by subalpine and alpine vegetation including 

subalpine meadows and tall grass vegetation as well as alpine meadows and carpets. The 

subalpine zone features different types of vegetation such as grass, forbs, mosses or lichens, 

heathland and scrubby or woody plants (figure 4, h & i). Alpine vegetation is mainly composed by 

grass-dominated meadows and herb-dominated carpets (Fayvush and Aleksanyan, 2020). Within 

the study region, large areas are characterized by rocky, bare and sparsely vegetated surfaces 

with scree accumulations and rock outcrops which are habitat for stenochorous plant species 

(Fayvush and Aleksanyan, 2020). 

The soils within the study region follow the vegetation types and the climatic zones. In the 

semi-desert Calcisols, Solonetz and Solonchaks are widespread. In the more arid steppes 

Kastanozems are favoured whereas in more humid steppes Chernozems dominate. Both are rich 

in organic matter and further benefit from the volcanic substrate. Cambisols are typically found 

in forested areas. The upland with subalpine and alpine meadows is dominated by little developed 

soils such as Leptosols and the transitional zone between the subalpine and the steppe zone by 

Phaeozems (Ghazaryan, 2013). 

The location of the study area between the Euro-Siberian and Irano-Turanian 

phytogeographical regions and between two hotspots of biodiversity (Caucasian and Irano-

Anatolian) in particular contributes to the rich biodiversity with a high level of endemism. Wildlife 
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plays an important role within the mountainous ecosystem and is conserved through designated 

corridors and protected areas. A current project of the World Wide Fund for Nature and the 

Ministry of Nature Protection Armenia is the establishment of an ecological corridor to connect 

the two major protected areas Arevik and Khosrov from which parts are covered by the study 

region (WWF, no date). This is of significance for one of the most prominent large mammals 

raising high interest for conservation, the Caucasian leopard (Panthera pardus saxicolor). Within 

recent years the population seems to stabilize with recorded reproduction, evidence of dispersion 

and active movement of the individuals. One male individual that was born in Nakhchyvan was 

recorded some 34-36 month later in the Khosrov State Reserve in Armenia, 170 km north-west. 

The area of this study is situated between those two sites and in direct proximity to vulnerable 

but viable neighbouring populations (Askerov et al., 2019; Zazanashvili, Manvelyan and 

Heidelberg, 2020). 

Agriculture has a great impact on habitats and biodiversity within the study region. The use 

of the grassland ecosystems for livestock farming for example is an important issue and requires 

careful planning of hay cutting and grazing management. Irregular management and lacking 

organization of hay cutting and pasture grazing is responsible for widespread degradation caused 

by both over- and under-grazing or -hay-cutting. Disproportional distribution of the pasture load 

is often the case when distant pastures and meadows suffer from under-use and closer locations 

from over-use. This results in a change of ecosystems, in particular in the replacement of alpine 

carpets with alpine, the spread of subalpine weeds into alpine ecosystems and a shift of the lower 

mountain zone and semi-desert vegetation in the mountain steppe ecosystem (Fayvush and 

Aleksanyan, 2020). Grassland communities adjacent to pasture areas are also often degraded due 

to changes in plant composition, erosion and resulting land-slides and mudflows (Fayvush, 

Aleksanyan and Bussmann, 2016). Animal dung is important for preventing the degradation of 

pastures and delivers valuable nutrients. However, it is also a free and well-accepted alternative 

fuel source to firewood and the collection and use is impacting the species composition (GIZ, no 

date). Finally, intensification and transformation of grassland and other semi-natural sedge-scrub 

communities into agricultural land can result in both changes in the composition of vegetation 

and animal communities as well as erosion (Aghababyan et al., 2016). 
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Threats for the biodiversity associated with crop production include losses of water due to 

ineffective irrigation and the linked salinization of soils, erosion and pollution by agricultural 

wastes, lack of crop rotation or violation of ploughing rules. Abandoned fields are widespread in 

Armenia. They can become a reservoir for weeds or invasive species and form new 

monodominant communities (e.g. Silybum marianum), dispersing and invading the adjacent areas 

with their seeds and propagates (Fayvush and Aleksanyan, 2020). The on-farm diversity can 

further be diminished and the distribution of valuable cultural landscapes may decrease. There is 

evidence that although the biodiversity can increase on abandoned farm fields in an early 

succession stage, it may decline in later succession stages. Shrub encroachment can serve as fuel 

for wildfires. Abandonment may further cause spill-over effects that lead to the marginalization 

of historic agricultural landscapes (Elbakidze and Angelstam, 2011; Prishchepov et al., 2012; Yin 

et al., 2018). This emphasizes the importance for an effective use of farmland in Armenia (CBD, 

2014). 

As illustrated in table 1, agriculture in the study area is primarily smallholder-based with 

family farms and private households engaging in different forms of cultivation or animal 

husbandry activities. Although mixed farming activities are very common, livestock farming and 

pastoralism is of particular importance for the smallholders in the study area. Especially in the 

area of Sisian-Goris most of the farmers are raising livestock. Together with the district of 

Gegharkunik, Syunik has the largest number of sheep from all administrative regions in Armenia. 

Many of the small-holders are transhumant pastoralists. In the late spring they move their 

livestock to summer pastures with small stations where they live several weeks or months. With 

the first snow in the autumn they bring them to their winter pastures in the valleys where the 

herders live. In order to feed the cattle in the winter, hay meadows are cut in July and August and 

hay or silage is prepared (see figure 5). 

Table 1 Characteristics of agriculture in Armenia. Number of farms and family farms with the proportions of family farms employed 
in specific farming systems for the administrative districts of Vayots Dzor and Syunik (FAO, 2020b). 

 Total number of 

farms  

Family Farms Land cultivation 

only 

Livestock farming 

only 

Mixed 

activities 

Vayots Dzor 10 384 8 932 2 114 379 6 439 

Syunik 21 361 19 989 9 369 727 9 893 
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Figure 5 Beehives and hay transport in the mountainous plateau of Syunik. Sources: left: (Feminó, no date); right: (Davtyan, no 
date). 

Besides the significance of livestock in Syunik, a considerable proportion of smallholders are 

cultivating their land with crops only. Although the smallest size class is the most abundant in this 

region, the farm size distribution also shows a share of more than 10% of farms with 5 ha or larger 

(see figure 6). Apart from Shirak, this is the highest proportion of the biggest farm size class in all 

the Armenian regions. The smallholders in Syunik primarily cultivate wheat and barley, 

leguminous crops, potatoes and vegetables as well as forage crops for their livestock. Beekeeping 

is an important farm activity in Sisian-Goris (figure 5). With about 31,000 bee hives Syunik is the 

region where most smallholders practice beekeeping (FAO, 2020b). 

 
 
Figure 6 Farm size distribution for Vayots Dzor and Syunik with farm unit size classes and 
associated plot size proportions. Compared to Vayots Dzor, Syunik features a considerably 
higher proportion of larger fields (FAO, 2020b). 
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Perennial crops and orchards in particular play a significant role for the livelihoods of the 

smallholders in both Vayots Dzor and Syunik with 1,479 ha and 1,326 ha area of plantings 

respectively. Important trees include apricot and other stone fruits, pome fruits and almonds. 

Grape vines and vine yards are an important source of income for many smallholders in Vayots 

Dzor with a total of 805 ha of grape vine plantings. It should be mentioned that this number only 

accounts for smallholder farms and not for larger commercial grape vine farms in Vayots Dzor. 

Besides perennial plantings the smallholders in Vayots Dzor cultivate mainly grain crops, forage 

crops, vegetables and melons but also industrial crops such as tobacco and sunflower. Livestock 

plays also an important role but is mostly included in mixed farming activities as opposed to 

Syunik (FAO, 2020b). 

The diversity of wild plants and crop relatives is of significantly value for the rural population 

in the study region. Old individuals of threatened wild pear trees are for example valued as a 

symbol of the village of Herher in Vayots Dzor (figure 7) (Asatryan, 2019). The wild plants are 

further intensively used for food, fuel and construction material as well as medicinal and 

ornamental purposes. There are about 200 edible wild plants in Armenia which are used in both 

fresh and processed forms comprising up to 10-15% of the total diet (Fayvush, Aleksanyan and 

Bussmann, 2016). In a recent study Nanagulyan et al. (2020) assessed wild plants and fungi sold 

in the farmer markets of Yerevan. Over four years they found 163 plant species of which some 

had never been recorded before.  

 

 

 

 

 

 

 

  

Figure 7 The oldest individual of the endangered wild pear  
Pyrus gergerana located besides the road to Herher 
(Asatryan, 2019). 
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2.2. LULC class typology 

This study focuses on agricultural land-use systems but also includes other land cover types 

in the area. The typology aims to deliver a coherent set of LULC classes with both agricultural 

target classes (1-6) and rich semi-natural by-product classes (7-11). The use of a synoptic and 

obscure “other” class is avoided. A LULC classification requires the definition of class boundaries 

that should be clear, precise and based on objective and possibly quantitative criteria. The LULC 

typology used in this study is therefore described in the following (the class abbreviations used in 

figures and tables are given in brackets): 

1) Grassland/ potential pastures (GL): Non-woody herbaceous vegetation and herbaceous 

vegetation grazed by livestock; shrubby woody vegetation canopy cover of less than 30-40%. 

The phenology is characterized by the vegetation period of the given altitudinal zone and 

herbaceous species. 

2) Hay meadows (HM): Non-woody herbaceous vegetation which is harvested once during the 

vegetation period for hay making. The meadows are rainfed and agricultural inputs and 

management such as irrigation, fertilization as well as tillage are absent. 

3) Improved meadows (IM): Intensively managed herbaceous vegetation that is irrigated and 

harvested at least twice during the vegetation period. The irrigated meadows are mostly 

found within riverine floodplains in the valleys. 

4) Field crops (FC): Land covered by annual crops followed by a harvest and a fallow period. 

Examples for crops are: cereals, oil seeds, vegetables and root crops and leguminous forage 

crops. This class does not include grass and meadow forages. Some of the crops are irrigated 

(e.g. vegetables) while other crops are mainly rainfed (e.g. grains and forages). It also 

comprises tillage or ploughing and possibly agricultural inputs like fertilization.  

5) Vine yards (VY): Vine yards with a typical row planting structure. This class comprises both 

larger commercial vine production areas as well as smaller subsistence-based yards within 

settlements. They may be irrigated and the herbaceous layer below the vines may be mowed. 

The permanent vegetation is characterized by a full phenological cycle from the sprouting of 

leaves in spring to the fruit ripening in summer to the leaf senescence in autumn. 
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6) Fruit orchards/ home gardens (FO): Fruit and nut trees within orchards or home gardens. The 

canopy cover in the case of orchards is dispersed and ranges from around 10-70% depending 

on the age of the trees. Besides the larger orchards it also comprises fruit and nut trees within 

smaller home gardens in settlements. Fruit orchards may be irrigated and the herbaceous 

layer below the trees may be mowed. The permanent vegetation is characterized by a full 

phenological cycle from the sprouting of leaves in spring to the fruit ripening in summer to 

the leaf senescence in autumn. 

7) Shrubland (SL): semi-natural grassland vegetation dominated by shrubby, woody species. The 

shrubby canopy cover ranges around 60-70%. 

8) Forest/ woodland (WL): Trees higher than 2 meter and with a canopy cover of more than 

80%. This excludes trees outside of forest such as fruit trees and nut trees in orchards and 

home gardens but includes urban trees with the defined minimum tree height and canopy 

cover. Depending on the species, the phenology can be characterized by evergreen or 

deciduous traits. 

9) Bare ground/ sparse vegetation (SP): Surfaces with a vegetation cover of less than 20% or 

below a vegetation index threshold given the climatic and ecological characteristics of the 

area. It includes bare rock and boulders in the mountainous landscape, river sediments, open 

soil surfaces due to disturbances or hazards such as landslides and bare rock surfaces of 

mining areas. It also accounts for overgrazed bare soils on grasslands and desert soils with a 

very low vegetation cover. It does not include fallows on agricultural land. 

10) Surface water (W): Water bodies larger than 10 m x 10 m and open to the sky with no canopy 

cover. 

11) Urban/ artificial (U): Urban structures such as paved roads, buildings and other urban 

features. Industrial structures include factories as well as power plants and solar plants. 

Concrete structures of hydropower plants and mining operations are also included. 
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2.3. Overview of the LULC classification scheme 

This section provides an overview of the general classification scheme of LULC as applied in 

this study (see figure 8). For the supervised classification, a pixel-based approach was chosen due 

to its simplicity and practicality for classification and accuracy assessment. It is widely applied and 

often yields similar accuracies as object-based approaches (Olofsson et al., 2014; Fu et al., 2017; 

Berhane et al., 2018). The classification follows the classic approach of classifying all classes at a 

time as opposed to hierarchical or sequential approaches.  

The supervised classification is based on a stratification into two agroecological zones or 

sub-regions: 1) the district of Vayots Dzor (Yeghegnadzor and Vayk), and 2) the administrative 

sub-districts of Sisian and Goris (see figure 2). The rationale for this were the pronounced climatic 

differences resulting in spectral variability within classes on the one hand, as well as the 

limitations of training sample sizes as specified by the GEE quota on the other hand. Initial 

classifications for the whole study areas delivered unsatisfactory map predictions with apparent 

 
 
Figure 8 Schematic overview of the classification system. The RF classification follows a pixel-based approach in a classic non-
hierarchical fashion. The imagery and ancillary data is processes within GEE and different datasets (layerstacks) are produced. 
Based on the dataset and the training sample RF predicts different maps and the mapping accuracy is determined using an 
validation sample that is independent from the training sample (source: own illustration). 
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class confusion. In order to account for this, the training data was extended to the point where 

the stratification was necessary because the training sample size exceeded the GEE quota for 

classification. With a stratification into two sub-regions these limitations could be overcome. This 

also implies that the RF map prediction and the accuracy assessment are produced separately for 

the two sub-regions. 

The remote sensing imagery was classified with the RF machine learning algorithm 

implemented in GEE. Training and validation data were sampled as input for the RF classification 

and the accuracy assessment. The remote sensing data was pre-processed within GEE and 

different datasets (image layerstacks) were constructed (see section 2.5). Both the datasets as 

well as the training and validation samples were then used by RF for the different map 

predictions. The output comprises a map and a reference classification for each dataset that is 

used to assess the accuracy by constructing an error matrix from both outputs. Sample based 

accuracy and area estimates were derived for underlying statistical support of the map 

predictions. In the following sections these steps are described briefly. 

2.4. Satellite data and sensor description 

This section describes the remote sensing imagery, the sensors as well as the ancillary data 

used for both as input for the LULC classification and as reference data for the acquisition of 

validation samples. The data products are further linked to the specific use in this study and the 

platforms used to display and obtain the data are associated. The remote sensing data includes: 

(1) Sentinel-2 MSI Level-2A images; (2) Sentinel-1 SAR imagery; (3) Shuttle Radar Topography 

Mission (SRTM) digital elevation image; (4) Visible Infrared Imaging Radiometer Suite (VIIRS) 

nighttime lights image, and (5) PlanetScope and RapidEye imagery.  

The Sentinel-2 earth monitoring constellation includes two polar-orbiting satellites 

launched in mid 2015 and early 2017 as part of the Copernicus Land Monitoring program. The 

satellites are in the same sun-synchronous orbit and phased at 180° to each other. They carry a 

wide-swath (290 km), high-resolution, multi-spectral imaging instrument (MSI) which captures 13 

spectral bands with a spatial resolution ranging between 10 and 60 meters. Together the sensors 

provide nearly global coverage with a revisit frequency of approximately five days between 

latitudes 56° south and 84° north (ESA, 2015). 
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The Sentinel-2 imagery was accessed in the GEE cloud environment as a readily pre-

processed product. The elementary level of Sentinel-2 MSI products are granules of a fixed size 

dependent on product level. The image product available in GEE is divided into 100 km tiles in 

UTM/WGS84 projection. The Level-2A data was used in this study because it offers the highest 

degree of image pre-processing. It includes a scene classification and an atmospheric correction 

applied to the Top-Of-Atmosphere Level-1C orthoimage product. The main output is an 

orthorectified Bottom-Of-Atmosphere corrected surface reflectance product (ESA, 2015). The 

applied algorithm corrects for both atmospheric and topographic effects (ESA, no date a). 

The study region is covered by four of the Sentinel-2 footprints: 38TMK, 38TNK, 38SNJ and 

38SPJ. All available Level-2A imagery for the period between the 1st of September 2018 and the 

30th of April 2020 were considered for the LULC classification and processed further within GEE. 

This resulted in 808 images for the given footprints. Figure 9 illustrates the cloud cover 

proportions of the included Sentinel-2 images.  

The Sentinel-1 constellation consists of two polar-orbiting satellites which operate day and 

night. The satellites are capturing C-band images with a SAR instrument. The active sensors are 

able to acquire images in any light or weather conditions because they are operating at 

wavelengths not interfered by cloud cover or a lack of illumination. The instrument is operating 

 
Figure 9 Bar chart showing the cloud cover in percentage of the image area for all Sentinel-2 observations considered in 
this study. Within the winter and spring months the cloud cover is rather high whereas in the summer there is higher 
availability of clear observations. The graph was produced in GEE using the stored cloud percentage metadata. 
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in four exclusive imaging modes with different resolution (down to 5m) and coverage (up to 400 

km) (ESA, no date d). The C-SAR instrument allows operation in both single polarisation (VV or 

HH) and dual polarisation (HH+HV, VV+VH). For each observation detailed metadata of the 

satellite position and attitude is available. The main conflict-free mode over land is the 

Interferometric Wide Swath Mode (IW), with VV+VH polarisation (ESA, no date c). 

Sentinel-1 data was also obtained as a pre-processed product within the GEE platform (GEE, 

no date c). For this study the Level-1 Ground Range Detected (GRD) product was used. It includes 

focused SAR data that has been detected, multi-looked and projected to ground range using an 

earth ellipsoid model. In contrast to the Single Look Complex (SLC) product, the GRD product has 

almost square pixels and pixel spacing with reduced speckle at the cost of spatial resolution and 

the phase information is lost. The GRD product is available in three different spatial resolutions: 

(1) Full Resolution (FR), (2) High Resolution, and (3) Medium Resolution (MR) (ESA, no date b). In 

the case of IW mode, the GRD product is available for high and medium resolution. The scenes of 

the product have an additional 'angle' band that stores the approximate viewing incidence angle 

in degrees at every point (GEE, no date c). 

The pre-processing steps for the calibrated and ortho-corrected GRD product include a 

thermal noise removal, radiometric calibration and a terrain correction using digital elevation 

products. The calibrated and corrected values are finally converted to a backscatter coefficient 

(σ°) in decibels (dB) using log scaling (10*log10(σ°)) indicating whether the radiated terrain 

scatters the incident radiation preferentially away from the sensor (dB < 0) or towards the SAR 

sensor (dB > 0) (GEE, no date b). Each scene of the collection in GEE is accessible in the different 

spatial resolutions, four band combinations (corresponding to scene polarization) and three 

instrument modes (IW, EW, WV). The use of the collection for the creation of best pixel 

composites requires filtering down to a homogeneous set of bands and parameters (see section 

2.5). For the purpose of this study, the IW mode with VV+VH polarisation with a high spatial 

resolution was chosen. Scenes between the 1st of April and the 31th of October 2019 were 

considered to complement the optical data in the LULC classification. This resulted in 87 SAR 

scenes covering of the study region. 

The ancillary data used in the study includes a digital elevation model of SRTM and the VIIRS 

nighttime lights product, both partially acquired and made available by NASA. The two products 
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are also directly available within GEE in a pre-processed form. The new digital elevation product 

of SRTM was released in 2015 with a spatial resolution of 30 m. It provides near global land surface 

coverage between +/- 60° of latitude (Farr et al., 2007). The SRTM product in GEE was pre-

processed by filling voids using open-source data (SRTM, 2015). VIIRS is one of five instruments 

onboard the Suomi National Polar-orbiting Partnership (NPP) mission launched in 2011. VIIRS 

acquires a panchromatic Day/Night band (DNB) that is ultra-sensitive under low-light conditions 

and therefore supports the observation of nighttime lights with a high spatial and temporal 

resolution. The nighttime lights imagery is also directly accessible within GEE as monthly averaged 

radiance composites of the DNB. In this study Version-1 of the product was used. The 

prrprocessing includes a cloud cover reduction using the VIIRS Cloud Mask product and exclusion 

of data close to the swath edges. It is filtered for stray light, lightnings, lunar illumination and 

cloud cover (NASA, no date). For this study the monthly composites for the entire year of 2019 

were processed within the GEE environment and included in the input dataset for classification. 

VHSR images from Planet Labs Inc were used for the assessment of reference data. Every 

day the company acquires images from more than 160 dove satellites and downlinks 340 million 

square kilometres of data with near global and daily coverage (Collison, 2017). Planet operates 

the PlanetScope and RapidEye Earth-imaging constellations with a constantly improving on-orbit 

capacity. Both imaging constellations acquire images with four bands between 455 nm and 860 

nm wavelength (RGB and NIR). The spatial resolution is 3 m for the PlanetScope and 6.5 m for the 

RapidEye constellation (Planet, 2016). Via the Planet Explorer platform quarterly and monthly 

surface composites as well as unprocessed daily products could be accessed. The surface 

reflectance composites are corrected for atmospheric effects and calibrated for sensor 

characteristics and sensor-to-sensor variability, resulting in consistent imagery data across 

seasons, continents and instruments (Collison, 2017). 

2.5. Processing of remote sensing imagery  

The pre-processed remote sensing data described above was further processed within the 

GEE cloud environment to construct different layerstacks used as input for the RF classifier. Major 

pre-processing steps included: (1) filtering the data for start and end-dates, the region of interest 

(ROI) and other parameters (e.g. bands of optic sensor / swath mode & polarization for SAR data); 
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(2) cloud masking of the filtered optical image collection; (3) Calculation of spectral derivates for 

each filtered optical image and inclusion as image band in the image collection (e.g. normalized 

difference vegetation indices); (4) Calculation of spatial-temporal metrics from the entire filtered 

optical image collection (e.g. min, max, mean, standard deviation of each band pixel in all filtered 

images); (5) Construction of cloud free monthly median composites of the optical image collection 

to construct a monthly time series between April and October; (6) Construction of monthly 

composites from means at different polarizations and look angles of the filtered SAR data to 

construct a monthly time series between April and October; (7) Calculation of texture metrics for 

a summer median composite (July-September) of both the filtered optical image collection (NIR) 

and the filtered SAR data; (8) Calculation of topography metrics from the SRTM digital elevation 

data (i.e. slope, aspect, eastness, northness); (9) calculating a yearly median composite from the 

monthly nighttime lights composites. Each of these steps and the underlying rationale is shortly 

described in the following. The final construction of the different input layerstacks for RF is 

described and illustrated subsequently. 

First of all, the data was filtered for the start and end dates and certain sensor parameters 

or acquisition bands. In the case of the optical data the temporally filtered collection contained 

all images within the1st of September 2018 and the 30th of April 2020 (808 images). The spectral 

bands of each image were filtered for: blue (band 2), green (band 3), red (band 4), NIR (band 8A), 

short wave infrared (SWIR)-1 (band 11) and SWIR2 (band 12). The SAR data was filtered for all 

available images acquired in IW mode with VV+VH polarisation between the 1st of April and the 

31st of October 2019 (87 images). Finally, the monthly nighttime lights composites were filtered 

for 2019 and average radiance. All images were clipped with the shape of the study region. 

The cloud cover of the optical image collection was masked using the quality band of the 

product. Both opaque clouds and cirrus clouds were masked out with a buffer of 90 pixels around 

the cloud cover. The filtered and cloud masked optical image collection was then used to calculate 

several derivates of the spectral bands of the image collection. For the classification of agricultural 

land use and land cover by-products different indices and spectral transformations for vegetation, 

bare surfaces and urban structures were considered. The multiple indices for vegetation vary in 

terms of adjustments to soil and moisture conditions, canopy structure or background signals. 
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The derivates were calculated and included as bands in the optical image collection. The table of 

appendix I shows a list of the derivates with the formulas and a short description. 

The entire optical image collection with the added derivates was then used as temporal bin 

to derive spectral-temporal phenology metrics. Phenology metrics are simple descriptive 

statistical metrics which describe a distribution of values - in this case the temporal distribution 

of pixel values for the different bands. The descriptive statistics include: minimum, maximum, 

mean, median, standard deviation, 25th quartile and 75th quartile. The mean band value of a 

certain pixel is calculated from all the pixels within the defined temporal range (1st of Sep 2018-

30th of April 2020). The metrics basically describe change over time and for spectral bands or 

derivates that are sensitive to vegetation, changes during the phenological year. Similarly, other 

land surfaces may also change more or less during the year. The temporal changes of bare 

surfaces and soil signals for example are important for agricultural land use. Using an extended 

temporal bin of more than one year, aids in capturing land-use practices such as tillage and 

ploughing, typically taking place in autumn and spring. For this temporal bin, the metrics were 

calculated using all optical bands and the derivates and resulting in 119 band metrics which were 

then assembled in the main layerstack. 

The cloud coverless monthly median composites were calculated following best (available) 

pixel compositing. Remote sensing data does not rely on a single image but can be composited 

by multiple images following certain quantitative criteria. Best pixel composites include quality 

composites such as greenest or barest pixel composites but also mean or median composites for 

a specific temporal bin in order to construct a time series for example. The process is therefore 

based on the same concept as the phenology metrics. Best pixel compositing was used to 

construct a time series displaying both agricultural management and the phenological changes of 

the vegetation in the study area. For this a temporal bin of one month was considered as 

sufficient. Although the temporal resolution allows composites with shorter time frames, there is 

also substantial cloud cover for certain periods which limits the data availability (see figure 9). 

Thus, monthly median composites were calculated using optical data as well as derivates related 

to vegetation or bare soils for seven consecutive months (April-October). The resulting monthly 

time series was then included in the main layerstack. 
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Because of the heterogeneity of the filtered SAR image collection regarding the image 

acquisition parameters, it was necessary to filter the data for ascending and descending modes 

and calculate the composites from means at different polarizations and look angles (GEE, no date 

b). This resulted in two mean composite bands for VV and VH with combinations of polarizations 

and angles for each month (April-October). The monthly SAR composites were then also included 

in the layerstack. 

Due to its practicality, the Grey level co-occurrence matrix (GLCM) was chosen to be 

included as texture for the LULC classification. As output, a continuous measure of spatial 

information is provided which can be used for further processing. The metrics can be separated 

in interior and edge textures. The choice of the set of measures depends on the application and 

specific objectives (Hall-Beyer, 2017). Based on Hall-Beyer's (2017) analysis of GLCM texture 

performance for different land cover and surface types four texture metrics were considered to 

be included: two interior texture metrics (correlation and variance) as well as two edge texture 

metrics (entropy and contrast). Two sets of these texture metrics were derived for both the 

optical and the SAR imagery for a three-month median composite in summer (July-September). 

In the case of the optical data, NIR was used to derive the GLCM textures. For the SAR imagery 

the two mean angle and polarization composites were used to derive texture metrics. This 

resulted in four optical texture and eight SAR texture bands that were added to the layerstack. 

Other ancillary data includes the SRTM digital elevation product and the VIIRS nighttime 

lights product. The digital elevation image was used to derive four topographic continuous 

metrics, namely the slope, the aspect, eastness and northness. Slope and aspect are the degree 

of change of elevation in magnitude and orientation for the steepest descent vector, respectively. 

Eastness and northness are the sine of the slope, multiplied by the cosine and sine of the aspect, 

respectively (Amatulli et al., 2018). The original elevation band as well as the derived topography 

metric bands were included in the layerstack (five bands). In case of the nighttime lights a median 

composite was calculated using the 'avg_rad' band for the entire year of 2019 (12 month). The 

resulting image was included in the layerstack. 
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Figure 10 Overview of the different layerstacks for the RF classification (source: own illustration). 

The digital elevation image was used to derive four continuous topography metrics, namely 

the slope, aspect, eastness and northness. Slope and aspect are the degree of change of elevation 

in magnitude and orientation for the steepest descent vector, respectively. Eastness and 

northness are derived from the sine of the slope, multiplied by the cosine and sine of the aspect, 

respectively (Amatulli et al., 2018). The original elevation band as well as the derived topography 
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metric bands were included in the layerstack (five bands). A median composite of the VIIRS 

nighttime lights was further calculated using the 'avg_rad' band for the entire year of 2019 (12 

months). The resulting image was included in the layerstack. 

The main layerstack containing all the processed bands was used to construct different 

datasets for the random forest classification (see figure 10). First, a baseline dataset was 

constructed containing spatial-temporal metrics and a monthly time series of the original optical 

bands. In order to evaluate how the LULC classification changes with different additional data this 

baseline dataset was then complemented with: (1) topography metrics; (2) the monthly SAR time 

series; (3) the texture metrics derived of the optical as well as the SAR composite; (4) different 

sets of indices and (5) the nighttime lights composite. Based on the observations of the different 

RF models, a “good choice layerstack” with data that improved the classification results was 

constructed and customized for each of the sub-regions (layerstack 8). The added value of the 

multisource data and considerations for the “good choice” dataset can be obtained from the 

results. 

2.6. Random forest 

Random forest is an ensemble classifier that produces multiple decision trees using a 

randomly selected subset of training samples and input variables. The different decision trees are 

grown by drawing a subset of training samples through replacement (bagging) meaning that the 

same sample can be selected several times whereas other samples may not be selected at all. The 

bag fraction defines the proportion of samples used to train and construct the trees (in-bag 

sample) and samples left out for an internal cross-validation to estimate how well the resulting 

RF model performs (out-of-bag error) (Belgiu and Drăgu, 2016). For the classification of LULC the 

GEE default bag fraction of 0.5 was used.  

The decision trees are independently produced without pruning and each node is split by 

the number of features (Mtry), selected at random (bootstrapped sample). The number of 

features is usually the square root of the number of input variables. The forest of random trees is 

grown up to a user-defined number of trees (nTree) to create trees with a high variance and low 

bias. There is evidence that the empiric value of 500 trees is suitable for most remote sensing 

applications and was therefore used within this study. The final classification decision is 
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determined by averaging (arithmetic mean) the class assignment probabilities calculated by all 

produced trees. The result is an unlabelled data input that is evaluated against all decision trees 

created in the forest and each tree votes for a class membership. The membership class with the 

maximum votes is the final class selected by the RF algorithm (Belgiu and Drăgu, 2016).  

RF addresses most of the challenges related with supervised classifiers. It can deal with a 

high dimensionality of input data and is able to classify multi-source data. Further, it shows a low 

sensitivity to the quality of training data and overfitting. However, with imbalanced training 

samples RF tends to favour the most representative classes (Belgiu and Drăgu, 2016). GEE 

supports the calculations of RF variable importance. The variable importance is relevant in many 

applications in order to select those variables with the greatest ability to discriminate between 

the classes and reduce dimensionality. However, a reduction of variables was not applied because 

it was not clear how the implemented algorithm calculates the importance of the variables. 

2.7. Acquisition of training and validation data 

Supervised image classification requires the sampling and class allocation of training and 

validation data to predict and map thematic features of interest and to assess the accuracy of 

these predictions (Foody, 2004). 

Data sampling  

According to Olofsson et al. (2014), sampling strategies can be grouped into non-random 

and random designs. They are defined in terms of inclusion probability, which relates to the 

likelihood of a given unit to be included in the sample (Stehman, 2000). A random sampling needs 

to meet two conditions: (1) the inclusion probability must be known for each unit selected in the 

sample and (2) the inclusion probability must be greater than zero for all units in the region of 

interest (Stehman, 2001). Ideally, both training and validation data should be obtained by random 

sampling. However, a random sampling approach can be time consuming and difficulties may 

arise in the case of a required ground truth assessment, given e.g. accessibility of the locations in 

the study region. Further, randomly sampled training data may not adequately reflect the spectral 

variances of the mapped classes in heterogenous landscapes. In these cases, a non-random 

sampling approach may be chosen, characterized by purposely and opportunistically allocating 

units to the sample. Nevertheless, if training and validation data are non-randomly sampled, the 
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data violates the assumption of independence and optimistic bias with overestimations of 

predicted accuracies is likely to affect the results (Hammond and Verbyla, 1996; Zhen et al., 2013). 

Training and validation data should reflect the proportions of class representation on the 

ground. Unequally or imbalanced proportions of training or validation sites relative to the actual 

ground proportions impact map predictions and accuracies. Classifiers are then likely to favor the 

‘majority’ classes within the training data and accuracy results may be biased. For training data, 

over-represented classes may dominate the predicted map while under-represented classes may 

be marginalized. In order to work with imbalanced datasets or cases where a class exhibits a very 

small proportion (i.e. rare classes), over- and under-sampling can be applied to construct more 

balanced training or validation datasets (Millard and Richardson, 2015). 

Following Waldo Toblers (1970) first law of Geography, “everything is related to everything 

else, but near things are more related than distant things”, spatial dependence might greatly 

affect the classification results. Spatial autocorrelation is an important measure of the spatial 

structure of a variable. A non-random spatial pattern can either show positive or negative spatial 

autocorrelation (Spiker and Warner, 2007). Spatial autocorrelation should be considered when 

constructing the datasets for both training and validation. A commonly used approach when 

allocating training samples is the use of polygons to delineate areas of known class membership 

in the image. Millard and Richardson (2015, p. 22) note that “[…] this method produces a highly 

clustered training sample with inherently high spatial autocorrelation.” A clustered training 

sample (i.e. a large proportion of points of a certain class in close proximity) could lead to a strong 

positive spatial autocorrelation and surrounding pixels of a different class are likely to be 

misclassified. Correspondingly, clusters of validation sites for a certain class can be responsible 

for inflated classification accuracies and biased area estimates. 

In the case of training and validation sampling, spatial autocorrelation will be high at a 

smaller distance from the objects (i.e. neighboring pixels) and will increase with some distance. 

Although in some cases (e.g. for rare classes/ clustered land use in valleys) spatial autocorrelation 

may not be avoided completely, it should be reduced as much as possible and occurring 

autocorrelation should be reported. A widely used metric to assess spatial autocorrelation is 

Moran’s I statistic (Eq. 1) (Moran, 1950),  
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where N is the number of spatial units indexed by i and j, x is the variable of interest, wij is 

a set of corresponding weights and 𝑥̅ is the sample mean. The values of I usually range from -1 to 

+1 with negative values indicating negative, positive values indicating positive and the value of 

zero indicating no autocorrelation. 

Class allocation 

The sampling of training and validation datasets requires the identification of the reality on 

the ground (i.e. the specific type of land use or land cover found in a place at a certain point in 

time). This could be achieved by acquisition of ground truth through field visits, detailed thematic 

spatial data or by interpretation of imagery, in particular very VHSR imagery. Approaches may 

also be combined in order to reduce limiting factors or to make use of beneficial synergies. While 

collecting ground truth trough field visits is the ideal, time, costs and accessibility can limit such 

endeavours.  

Based on these considerations concerning the quality of training and validation data for 

remote sensing classifications, a dataset of both training and validation sites was constructed 

within this study. In the following, the data sampling and class allocation methods are displayed 

in depth, illustrating the process in a transparent fashion in order to make it reproducible for 

other researchers. Limitations and problems encountered during the sampling protocol are also 

displayed. 

Training data collection 

In a training stage, areas of known class membership are identified in the image (training 

sites). The remotely sensed response of these training sites is then characterised from the sample 

of pixels they contain. The training data is used to train the random forest classifier. The training 

statistics are used to allocate each pixel in the image to the class with which it has the greatest 

similarity. The training data is thus a mean to extract thematic information from the remotely 

sensed imagery and direct the classification (Foody and Mathur, 2004). The accuracy of the map 

(Eq. 1) 
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prediction is crucially dependent on a variety of pre-class allocation issues and in particular the 

training stage (Foody, 2004; Foody and Mathur, 2004; Millard and Richardson, 2015). 

Training data sampling 

Unfortunately, no accurate spatial data was available for the study region that captured the 

agricultural land-use classes of interest. To estimate balanced training sample sizes, official 

cadaster data provided by the Armenian government, translated to English, served as a first 

estimation of the actual land-use proportions in the study region. Since the data was structured 

for the different administrative districts and for different use and ownership categories, the area 

information was extrapolated and adjusted for the study region and classes of interest. This 

extrapolation is again subject to inaccuracies and can only serve as a broad estimation of training 

data proportions. The resulting area proportions of the LULC classes in the two zones of the study 

region based on the land balance is shown in table 2. 

A non-random sampling design was chosen to allocate single-pixel training samples. 

Although a random sampling design is generally preferable, it was rejected due to the work load, 

the given circumstances in respect to reference data and in particular to adequately represent 

the spectral variances of the classes, which is of special importance regarding the spectral 

similarity of the target classes. Olofsson et al. (2014) highlight the importance to define a 

minimum mapping unit (MMU) when allocation training and validation samples. The definition of 

the smallest observable feature that can be captured reliably depends on both the technical 

possibilities of the source data (i.e. spatial resolution) and the class or feature of mapping interest 

and can have important implications for the accuracies of thematic maps (Herold, 2011). Although 

it is largely agreed that the smallest observable feature that can be identified needs to be four 

contiguous pixels in size (in the case of Sentinel-2, 40 m x 40 m), an MMU of one pixel was chosen 

(20 m x 20 m) to allow the detection of smaller agricultural land-use patches common in the study 

area. 
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Table 2 LULC proportion as derived from the government land balance and proportions of training samples for both zones of the 
study region. 

  LULC proportions (land balance)   Training samples (pixel count)  

LULC Class Vayots Dzor   Sisian-Goris   Vayots Dzor Sisian-Goris 

  Area (ha) % of 
total  

Area (ha) % of 
total 

Area 
(pixel) 

% of 
total  

Area 
(pixel) 

% of 
total 

Grassland 119005,51 50,83 119375,38 52,58 2055 25,99 2421 25,76 

Hay meadows 51781,26 22,12 33198,18 14,62 1208 15,28 1749 18,61 

Improved 
meadows 

8630,21 3,69 5533,03 2,44 387 4,89 284 3,02 

Field crops 19259,40 8,23 32266,84 14,21 712 9,00 1633 17,37 

Vine yards 893,30 0,38 29,94 0,01 587 7,42 n.d. n.d. 

Fruit orchards 1011,10 0,43 423,92 0,19 724 9,16 660 7,02 

Shrub land 7544,15 3,22 10012,69 4,41 958 12,11 1082 11,51 

Forest/ 
Woodland 

14697,75 6,28 17943,82 7,90 322 4,07 502 5,34 

Sparse 
vegetation/ bare 

2346,00 1,00 303,44 0,13 448 5,67 457 4,86 

Water 3297,43 1,41 1925,86 0,85 94 1,19 148 1,57 

Urban/ Build up 5655,40 2,42 6012,41 2,65 413 5,22 464 4,94 

Total 234121,50  227025,52  7908  9400  

 

For both sub-regions, a total of 17308 pixels have been sampled as training data by 

allocating points in an opportunistic and non-random fashion (see figure 11), covering about 

0.15% of all pixels in the study area. Table 2 shows the allocation of training samples, with pixel 

numbers per class and the associated proportions in detail for both zones of the study area. 

During the allocation process, a balanced distribution was considered in accordance with the 

land-use statistics. For rare and overrepresented classes, over- and under-sampling was applied 

respectively to sufficiently represent rare classes of interest and to decrease the workload for 

widely distributed classes such as grassland. 



 

 37 

 

Figure 11 Schematic map showing the distribution of the collected training samples (source: own illustration). 

Training data class allocation 

The cadaster data provides information about the land use or land cover found in the study 

region and the associated area proportions, but not regarding their spatially explicit distribution. 

Due to the implication of the SARS-CoV-2 pandemic, an acquisition of reference data in the field 

was not possible either. Although recent advances have been made regarding cloud-based 

remote sensing applications and open access to imagery and platforms that facilitate the 

interpretation of imagery and the sampling process (e.g. Collect Earth), a lack of knowledge of the 

situation on the ground and associated reference data may lead to serious misinterpretations 

(interpreter bias). This was strived to be minimized by a careful review of literature, existing map 

products, official land balance statistics and consultation with locals and experts. 

The class allocation of training data was then entirely based on interpretation of remotely 

sensed imagery, associated with ancillary data for support (e.g. topographic data) and derived 

pixel values and time series charts. The assignment of class membership is based on the class 

typology (section 2.2) and directed by three different interpretation frameworks: (1) Daily images 

and monthly cloud free composites with full spatial and temporal coverage via the Planet Lab 

Explorer, (2) GEE framework with multiple information layers, including multi-temporal imagery, 

time series charts, different quality composites and derivates such as NDVI or bare soil index (BSI) 
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and (3) Time series visualization framework by He Yin (2018). Figure 12 illustrates a decision tree 

for the assignment of class membership. A detailed description of the collection framework can 

be obtained from appendix II-IV.  

In order to avoid optimistic bias, only pixels where the membership of a class was known 

with a very high certainty were also included in the final training sample. The 0.01% share of vine 

yards in the zone of Sisian-Goris was excluded from the classification. Besides the low expected 

representation, no area was encountered where a vine yard class membership could be 

determined with an acceptable certainty. In order to minimize autocorrelation, a minimum 

distance was considered for the majority of points. However, this was partially violated for rare 

classes and target classes due to applied over-sampling to ensure satisfactory representation of 

the spectral variations. Olofsson et al. (2014) stress the importance of a basic visual assessment 

of the map in order to evaluate the suitability of the map for the given applications before 

proceeding to a more detailed assessment. This was done repeatedly by adjusting the training 

data and removing obvious errors in an iterative manner to refine the map before the collection 

of validation data and the analysis of the reference classification for the accuracy assessment. 

 

 

 
 

Figure 12 Decision tree for the assignment of class membership based on specific criteria. The final LULC classes are displayed in 
green (source: own illustration). 
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Validation data collection 

The quality of the predicted thematic maps is determined with an accuracy assessment 

using validation data. The sampling of validation data was largely based on the “good practice” 

recommendations for accuracy assessments from Olofsson et al. (2014). The methodology can be 

separated into the three major components: the sampling design and response design which will 

be described in this section and the accuracy analysis, which will be described in the next section. 

Ideally, the validation data should be ground truth and statistically independent from the training 

data. Following the “good practice” recommendations, this section also outlines the adaptations 

of the protocols for the objective of this study and reports problematic cases and associated 

deviations. 

Validation data sampling 

The allocation of points for probabilistic sampling can be achieved with different 

approaches such as the use of clusters or strata as well as the use of a simple-random versus 

systematic sampling There are certain trade-offs between different approaches regarding specific 

accuracy objectives and desirable sampling design criteria. Common accuracy objectives are the 

estimation of overall-accuracy, user’s accuracy and producer’s accuracy or error of commission 

and error of omission respectively, as well as area of each class. Desirable sampling design criteria 

include ease and practicality of implementation, representative spatial distribution across the 

ROI, low variance of the accuracy and area estimates, meaningful sample sizes for rare classes 

and ease of applying changes in any step of the sampling design.  

In this study, a stratified simple-random sampling approach was chosen for the allocation 

of validation points. Stratification is defined as the partitioning of the ROI into strata where each 

assessment unit (i.e. pixel) is assigned to a single stratum. Stratification can be applied for two 

cases: 1) To separate a ROI with pronounced differences of the environment or management 

systems for better classification results; and 2) To separate a ROI based on the classes obtained 

from the predicted map in order to report the results (e.g. accuracy and area estimates) per class. 

Other reasons include the urge to map and report accuracies and class distribution for a specific 

region (i.e. administrative district) and to stay within quota limits of applications or platforms. For 

map validation, a stratified sampling approach addresses the key objective of this study to 
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accurately estimate class-specific accuracies and areas. For this study a stratification was applied 

on two levels: (1) the level of the sub-regions of Vayots Dzor and Sisian-Goris due to a strong 

environmental gradient between the two regions and more importantly due to GEE quota 

limitations for the training sample size; and (2) the level of the LULC classes derived from the 

predicted map with a stratum for each class for the sampling of validation data. 

The choice of sample allocation proportions for the strata is an essential step of the 

sampling protocol, because different allocations favor different estimation objectives. An 

allocation of equal sample sizes to each stratum favors user’s accuracy over producer’s and 

overall accuracy, while proportional allocation (i.e., the sample size allocation to each stratum is 

proportional to the area of each stratum) generally lower standard errors of overall and 

producer’s accuracy estimates. Olofsson et al. (2014) therefore advocates a compromise between 

favoring user's versus producer's and overall accuracies. For this study, the allocation was slightly 

shifted away from a proportional allocation by increasing the sample size in the rarer classes albeit 

paying attention not to increase the size to the point where the sample allocation is equal. 

The determination of the sample sizes for the allocation of points for each stratum can be 

derived by calculating the anticipated standard errors for various sample sizes and allocations. 

Cochran (1977),provide a formula to estimate minimum sample sizes for stratified random 

sampling (Eq. 2), where N is the number of units in the ROI, S(Ô) is the standard error of the 

desirable estimate of overall accuracy, Wi is the mapped proportion of area of class i, and Si is the 

standard deviation of stratum i where: 𝑆𝑖 = √𝑈𝑖(1 − 𝑈𝑖) (Cochran, 1977). Because N is typically 

large (e.g., over 11 million pixels in this study), the second term in the denominator of equation 

2 can be ignored. The FAO provides an excel spreadsheet where the minimum sample size can be 

estimated based on equation 2 (FAO, 2016). The spreadsheet was adjusted to the set of class 

strata of each of the two sub-regions (11 classes in Vayots Dzor and 10 classes in Sisian-Goris). A 

target standard error of 0.01 was set for the overall accuracy. The mapped proportion of area for 

the classes (Wi) were obtained from the initially predicted map.   
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A literature review was conducted to identify common user’s accuracy ranges for the classes 

of this study. Appendix V shows the acquired user’s accuracy estimates of different publications. 

Although it is difficult to compare the resulting estimators from different studies due to the 

variety of applied methodologies and data sources, the accuracy estimate ranges may inform 

about class specific accuracies. The overview revealed that some classes such as forest cover, 

open water and actively used cropland generally exhibit higher user’s accuracies. Other classes 

such as hay meadows, grassland or shrubland and show lower user’s and producer’s accuracies. 

Considering this, expected class-specific user’s accuracies were estimated with three levels of 

optimism. Overall and class-specific sample sizes were calculated for the different class specific 

user’s accuracies. The results are presented in appendix VI for Vayots Dzor. However, this reflects 

a proportional sample allocation and was modified in order to balance different accuracy 

objectives as described previously. 

For the sample allocation, a focus was put on the agricultural target classes. Although the 

proportional minimum sample size estimates are small given their little distribution, these classes 

in particular require larger sample size due to lower anticipated accuracies and due to the fact 

that they are of specific interest. In turn, for classes with higher anticipated user’s accuracies and 

classes of lower interest, smaller sample sizes are sufficient for the aim of this study. In order to 

inform about the sample size allocated for each class of interest the variance estimator for user's 

accuracy was applied (see Section 2.8, Eq. 8). Thus, a class-specific sample size can be identified 

that is needed to achieve certain standard errors for the assumed user's accuracy for that class. 

Accordingly, the allocation of samples per class strata can be adjusted until a satisfactory precision 

of the estimate is reached. It is relevant to mention that insufficient sampling does not result in 

biased estimators of accuracy and area but imprecise estimators with a higher standard error. 

Following this procedure, the sample sizes per class have been determined on the basis of 

the moderately optimistic assumed user’s accuracies (Alloc2, appendix VI), considering primarily 

the work load and time restrictions in respect to a larger sample allocation. For the by-product 

classes forest, bare, water and urban sample sizes between 50 and 100 were chosen. For 

shrubland, a sample size of 200 was chosen due to the larger predicted proportion in Vayots Dzor. 

For the agricultural target classes, sample sizes of 200 were considered to be sufficient. An 
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exemption was made for improved meadows with only 150 samples due to the low distribution. 

For the grassland class, a sample size below 1000 points was chosen due to time constraints. 

The table of appendix VII shows the advocated allocations per class strata, the assumed 

user’s accuracies, and the associated standard errors. The determined sample sizes result in 

acceptable standard errors for the agricultural target classes. In the case of grassland, where the 

assumed user’s accuracy was increased to 90% to reduce the sample size, the standard error 

didn’t increase drastically for smaller assumed user’s accuracies and was around 1.57% for an 

assumed user’s accuracy of 70%. For the classes of minor interest such as urban or bare, the 

expected standard errors of around five percent for the assumed user’s accuracy still allow 

meaningful estimates with a moderate precision. 

The sampling approach in GEE is based on a random sample with a minimum distance filter. 

The exact number of randomly sampled points cannot be directly controlled because close points 

are only erased subsequently after the allocation (i.e. the distance reduced number of points 

cannot be controlled directly). Further, since the strata are based on the classes of the map, it is 

likely that a proportion of pixels are false positive (i.e. a pixel that is classified as grassland but is 

actually shrubland) and therefore do not account for the validation sample of that class. Hence, 

an a-priori unknown proportion of all the pixels allocated in each stratum will account for other 

classes. In particular for rare classes, where sampled pixels are likely to be close and erased or 

classified as false positive, a satisfactory sample size can be hindered. In order to account for this, 

the number of allocated points in each stratum has been increased.  Since the pixels classified as 

false positive in one strata account for the validation sample of another, the final sample sizes are 

likely to be lower for some classes and higher for other classes than initially aimed for. Although 

this circumstance is inconvenient for a sampling of a specified number of points, GEE provides an 

option within the applied sampling approach to iteratively repeat the process until a desired 

sample size in each class is reached. 

Validation data class allocation 

The sampled points need to be assigned the correct class membership (flagging)as part of 

the response protocol. The decision of class membership of each point needs to be based on 

reference data. Further the reference classification should be of higher quality than the 

classification of the produced map. This can be achieved by using a reference source of superior 



 

 43 

quality, or, if using the same reference source, by using a more precise process to create the 

reference classification (Olofsson et al., 2014). As detailed earlier, the acquisition of reference 

data faced serious limitations within the scope of this study due to a lack of detailed, spatially 

explicit archived data and the constraints for an assessment in the field. The reference data 

sources for the class membership agreement were thus the same as in the collection of training 

data and based on the same process as outlined for training data. It was strived for a more 

accurate creation the reference classification by investing more time in the agreement of 

reference class membership and in the response design and flagging process in general. 

Both positively and false positively classified pixels were labeled with the correct reference 

class membership by placing a point feature with a specific class attribute on the randomly 

sampled pixels within GEE. During the labeling protocol, both easier and more difficult situations 

were encountered in respect to determining the reference class membership of the pixel. Some 

of these cases are described with a short interpretation protocol in appendix VIII-X for 

transparency. It must be noted that a small portion of the allocated points were not labelled 

because they were sampled outside the strata of interest. In order to avoid double accounting of 

these pixels and the associated impact on equal allocation probabilities, these samples have been 

excluded. Table 3 shows the final allocation of validation points for each strata and the associated 

land cover proportions from the land balance. 

As explained, the finally allocated sample size deviates from the aimed sizes to a certain 

extent. For some classes like shrubland, hay meadows and fruit orchards, the final sample sizes 

are larger than aimed for. This is favorable in respect to the precision of the accuracy and area 

estimates. Accordingly, for some classes less samples could be flagged and the resulting sample 

size is smaller than initially desired. Therefore, the precision of the estimators is reduced for 

classes like vine yards, field crops or improved meadows. Due to time constraints, a 

complementary sampling of validation points for these classes was not applied. The described 

sampling and response design have been applied for both regions with minor adjustments. In the 

agroecological zone of Sisian-Goris, there was one class less and the proportions of the validation 

data are slightly different for both zones. However, problematic pixels encountered during the 

flagging process have been treated consistently and for both regions, a stratified random 

sampling was implemented with equal requirements regarding basic accuracy assessment 
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objectives and the desirable sampling design criteria. The spatial distribution of the final 

validation samples is shown in figure 13. 

Table 3 LULC proportion as derived from the government land balance and proportions of validation samples for both zones of the 
study region. 

  LULC proportions (land balance)   Validation samples (pixel count)  

LULC Class Vayots Dzor   Sisian-Goris   Vayots Dzor Sisian-Goris 

  Area (ha) % of 
total  

Area (ha) % of 
total 

Area 
(pixel) 

% of 
total  

Area 
(pixel) 

% of 
total 

Grassland 119005,51 50,83 119375,38 52,58 851 34,64 812 36,22 

Hay meadows 51781,26 22,12 33198,18 14,62 243 9,89 292 13,02 

Improved 
meadows 

8630,21 3,69 5533,03 2,44 139 5,66 126 5,62 

Field crops 19259,40 8,23 32266,84 14,21 169 6,88 253 11,28 

Vine yards 893,30 0,38 29,94 0,01 105 4,27 n.d. n.d. 

Fruit orchards 1011,10 0,43 423,92 0,19 284 11,56 132 5,89 

Shrub land 7544,15 3,22 10012,69 4,41 332 13,51 275 12,27 

Forest/ 
Woodland 

14697,75 6,28 17943,82 7,90 80 3,26 101 4,50 

Sparse 
vegetation/ bare 

2346,00 1,00 303,44 0,13 98 3,99 92 4,10 

Water 3297,43 1,41 1925,86 0,85 50 2,04 68 3,03 

Urban/ Build up 5655,40 2,42 6012,41 2,65 106 4,31 91 4,06 

Total 234121,50  227025,52  2457  2242  

 

 
Figure 13 Schematic map showing the distribution of the collected validation samples (source: own illustration). 
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In order to account for autocorrelation within the validation data a minimum distance filter 

was set to 500 m for each class stratum. Two exemptions have been made for improved meadows 

and vine yards with a minimum distance of 250 m only to increase the sample size of the allocated 

points within these rare classes. In order to assess the autocorrelation for the validation data, 

Moran’s I was calculated using the Moran function implemented in the R raster package (Hijmans 

et al., 2020). The calculation was run for the predicted maps used for the stratification of the 

validation data sampling of both sub-regions.  

For the calculation of Moran’s I, the differences among all possible pixel pairs are assessed. 

For the whole ROI (6 Mio pixel in each sub-region) this is not feasible regarding the computation 

power. Moran’s I can be therefore calculated for multiple sub-sets of the classified map in 

different landscapes. This is also favorable regarding major variations between landscapes and 

the implications for resulting autocorrelation estimates. In order to be representative, a minimum 

size for the sub-set maps of 30km x 30km was applied. The classified map in appendix XI illustrates 

seven different landscapes considered for the calculation of Moran’s I which are marked with 

points. Natural and semi-natural land-cover such as grassland and shrubland which are dominant 

over large areas and clusters of agricultural land use are likely to exhibit spatial autocorrelation. 

It is of interest to assess the spatial autocorrelation in the map in order to report given values for 

the validation data and possibly counteract spatial autocorrelation by increasing the minimum 

distance for the validation samples. 

For each of the sub-set classifications, the associated values of Moran’s I were calculated 

with a scale of minimum distance values and the resulting curves were plotted. A distance 

dependent Moran’s I range has been constructed based on the curves of the different sub-sets. 

The chosen minimum distance thresholds of the validation sampling have been then compared 

with both the range and specific curves of the subset.  

An important last step of the response design is the specification of rules for determining 

agreement between the obtained map and the reference classification. In the simple case of this 

study a single label is used for both the map and the reference classification. If these labels agree 

for a certain assessment unit the predicted map class is correct. If the labels disagree there is a 

misclassification characterized by the type of confusion defined by both labels. Olofsson et al. 
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(2014) stress the importance of uncertainty affecting the validation data regarding a precise 

definition of agreement. Two potential error sources that could lead to a pronounced bias in the 

accuracy and area estimates are: (1) the uncertainty in respect to spatial co-registration of the 

map and reference location, and (2) the uncertainty associated with the interpretation of the 

reference data. In the case of this study, the reference data was obtained from readily co-

registered image sources. No data was acquired in the field where the reference is likely to be 

affected by spatial co-registration for example due to a low quality of the GPS position. The 

interpreter uncertainty is more relevant in this study. In particular interpreter bias that is defined 

as an error in the assignment of the reference class to the spatial unit could lead to biased 

accuracy and area estimates. As mentioned earlier, this is mainly due to the lack of reference data 

and the resulting approach of simply interpreting imagery in order to derive “ground truth”. The 

ideal would be if the reference classification is based on reference data where the samples 

represent the exact ground truth. However, in the case of this study the ground truth is 

constructed from a comprehensive interpretation and therefore likely to be affected by 

interpreter bias. 

2.8. Accuracy and area estimates 

The measures to derive accuracy and area estimates of the mapped classes from the map 

and reference classification are part of the analysis protocol. In the case of this study, there are 

two essential objectives of the analysis: (1) accuracy assessment of the LULC classification, and 

(2) estimation of the area of each LULC class. The error matrix (also known as contingency table) 

is the central tool to assess the accuracy and estimate the class areas of the predicted map. It is 

a simple cross-tabulation of the class labels of the predicted map classification against the 

reference classification and the class labels of the validation samples. The major diagonal of the 

error matrix features the correctly classified samples whereas the off-diagonal elements show 

the errors of omission and commission (Olofsson et al., 2014). Appendix XII shows an example of 

a basic 4x4 error matrix with four different classes. 

The rows of the error matrix display the labels of the predicted map classification whereas 

the columns show the labels of the validation samples from the reference classification. Within 

the matrix, pij represents the area or pixel count proportion of the population that has the map 
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class i and the reference class j, where population is defined as the full region of interest. From a 

population error matrix with q classes, the overall accuracy O is given by equation 3. The user’s 

accuracy Ui is a measure of the proportion of the area correctly mapped as class i that has 

reference class i (Eq. 4). Its inverse parameter (1 − 𝑈𝑖) is the error of commission. The producer’s 

accuracy Pj is a measure of the proportion of the area of reference class j that is correctly mapped 

as class j (Eq. 5). Its inverse parameter (1 − 𝑃𝑖) is the error of omission. 

 

𝑂 =  ∑ 𝑝𝑗𝑗

𝑞

𝑗=1
 

 

𝑈𝑖 = 𝑝𝑖𝑖/𝑝𝑖∙ 

 

𝑃𝑗 = 𝑝𝑗𝑗/𝑝∙𝑗 

 

Although there are many other measures of accuracy such as the commonly used kappa 

coefficient of agreement, Olofsson et al. (2014) suggest to use only the three basic accuracy 

metrics presented above, arguing that kappa is highly correlated with overall accuracy and it 

would be redundant to report both measures. 

To derive the estimates of accuracy and area from the validation sample, Olofsson et al., 

(2014) advocate for a design-based inference as framework for the derivation estimates. A central 

principle of the design-based inference is that the specific estimator depends on the applied 

sampling design which means that different sampling designs require different estimators. First, 

the cell entries of the error matrix and the derived measures have to be estimated from a sample. 

Once the error matrix is constructed and 𝑝𝑖𝑗 is known, the sample-based estimator of 𝑝𝑖𝑗 (𝑝̂𝑖𝑗) 

can be calculated. The error matrix may also be reported as the sample-based area proportions 

𝑝̂𝑖𝑗 rather than sample counts 𝑝𝑖𝑗. The formula to derive 𝑝̂𝑖𝑗 depends on the implemented 

sampling design of the validation data. In case of probabilistic designs like the stratified random 

sampling it is given by equation 6,  

 

(Eq. 4) 

(Eq. 5) 

(Eq. 5) 
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𝑝̂𝑖𝑗 = 𝑊𝑖

𝑛𝑖𝑗

𝑛𝑖
 

 

where Wi is the proportion of area mapped as class i. Substituting 𝑝̂𝑖𝑗 in equations 3-5 results in 

sample-based estimators of overall, user’s and producer’s accuracies.  

The sampling variability linked with the accuracy estimates should be assessed by calculating and 

reporting standard errors. The variance of the sample-based estimator of overall accuracy, 𝑉̂(𝑂̂), 

is given by equation 7. The variance of the sample-based estimator of user’s accuracy, 𝑉̂(𝑈̂𝑖), is 

given by equation 8 and the variance of the sample-based estimator of producer’s accuracy is 

given by equation 9, where 𝑁̂∙𝑗 = ∑
𝑁𝑖∙

𝑛𝑖∙
𝑛𝑖𝑗

𝑞
𝑖=1  is the estimated marginal total number of pixels of 

reference class j. Nj· is the marginal total of map class j and nj· is the total number of sample units 

in map class j. The square root of the variance estimators results in the standard errors. The 

variance estimators are based on an assessment unit of one pixel and each pixel has a single map 

and reference classification label. The square root of the variance estimators results in the 

standard errors (Olofsson et al., 2014). 

 

𝑉̂(𝑂̂) = ∑ 𝑊𝑖
2

𝑞

𝑖=1
𝑈̂𝑖(1 − 𝑈̂𝑖)/(𝑛𝑖∙ − 1) 

 

𝑉̂(𝑈̂𝑖) = 𝑈̂𝑖(1 − 𝑈̂𝑖)/(𝑛𝑖∙ − 1) 

 

𝑉̂(𝑃̂𝑗) =
1

𝑁̂∙𝑗
2

[
𝑁𝑗∙

2(1 − 𝑃̂𝑗)2𝑈̂𝑗(1 − 𝑈̂𝑗)

𝑛𝑗∙ − 1
+

𝑝̂𝑗
2 ∑ 𝑁𝑖∙

2𝑝
𝑖≠𝑗

𝑛𝑖𝑗

𝑛𝑖∙
(1 −

𝑛𝑖𝑗

𝑛𝑖∙
)

𝑛𝑖∙ − 1
] 

 

Apart from the accuracy estimates, the error matrix also serves as foundation for the area 

estimates of each class. The class specific area may be derived from the error matrix in two 

different ways. There is interest in estimating the proportion of area of class j=k. The row and 

column totals are the sum of the 𝑝𝑖𝑗 values in the corresponding rows and columns. Consequently, 

(Eq. 7) 

(Eq. 9) 

(Eq. 6) 

(Eq. 8) 
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the row total 𝑝𝑘∙ is the proportion of area mapped as class k and the column total 𝑝∙𝑘 represents 

the area proportion of class k as specified by the reference classification. Because the reference 

classification is generally less biased than the predicted map (i.e. the bias associated with 

reference data error is smaller than the bias associated with map classification error) it is 

recommended, that the estimation of class specific area is based on 𝑝∙𝑘. For the stratified random 

sampling, the widely applied area estimator 𝑝̂∙𝑘 is recommended by Olofsson et al. (2014), its 

formula is given in equation 10. The standard error of the stratified area estimator 𝑝̂∙𝑘 is given by 

equation 11, where 𝑛𝑖𝑘 is the sample count of cell element i of class k in the error matrix, Wi is 

the area proportion of map class i, 𝑝̂𝑖𝑘 = 𝑊𝑖
𝑛𝑖𝑘

𝑛𝑖∙
 and the summation is over the q classes. 

 

𝑝̂∙𝑘 = ∑ 𝑊𝑖
𝑞
𝑖=1

𝑛𝑖𝑘

𝑛𝑖∙
 

 

𝑆(𝑝̂∙𝑘) = √∑ 𝑊𝑖
2

𝑖

𝑛𝑖𝑘

𝑛𝑖∙
(1 −

𝑛𝑖𝑘

𝑛𝑖∙
)

𝑛𝑖 − 1
= √∑

𝑊𝑖𝑝̂𝑖𝑘 − 𝑝̂𝑖𝑘
2

𝑛𝑖∙ − 1𝑖
 

3. Results 

In this section, the results of the LULC classification are presented and illustrated. Due to 

the stratification into agroecological zones, the results are displayed separately for Vayots Dzor 

and Sisian-Goris. First, the LULC class spectra are assessed with descriptive statistics and 

illustrated to assess class separability and limitations. Then the accuracy and area estimates of 

the “good choice” classification are provided and the distribution and extent of LULC classes is 

illustrated with a map. Major misclassification is assessed and described with a focus on the 

agricultural target classes. Maps for two simple applications of the LULC data are displayed. 

Subsequently, the baseline classification is compared to the different dataset trials to assess the 

added value of using multisource data, illustrated with both tables and bar charts of the user’s 

accuracy. Major differences between the datasets are described and trends of enhancement of 

the classification are highlighted. Apparent visual differences between the baseline and the “good 

choice” classification are further illustrated with a map. Finally, the spatial autocorrelation results 

(Eq. 10) 

(Eq. 11) 
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for the validation data are displayed to assess the potential impact on the quality of the accuracy 

and area estimates. 

3.1. Spectral class assessment 

Class separability is of particular interest to understand the spectral collinearity of the 

agricultural and semi-natural classes. The knowledge capture was achieved by sampling pixel 

values of the different bands of the training samples and visualized with box-plots and time series 

line charts. The knowledge capture is useful to identify input variables which are more likely to 

effectively differentiate classes as well as those which are prone to fail in providing a distinction. 

The time series illustrate differences in plant phenology of the classes over a growing season and 

provide insight which months are more suitable for the discrimination of classes. 

Figure 14 shows both charts for NDVI and all agricultural and semi-natural classes in Vayots 

Dzor with (a) the box- and whisker-plots for the spectral-temporal metrics, and (b) the monthly 

time series as line chart. The corresponding results for Sisian-Goris are provided in appendix XIII. 

As expected, the grassland and hay meadow class are spectrally similar across all spectral-

temporal statistics with some minor differences. On the one hand, the maximum NDVI is higher 

for hay meadows, indicating a higher biomass, which is most likely why these areas are used for 

hay making. On the other hand, the minimum NDVI is slightly lower for the hay meadows which 

might be associated with the hay cutting. Therefore, the standard deviation is also higher for hay 

meadows. Improved meadows exhibit high NDVI values across all spectral-temporal metrics. 

Whereas the maximum NDVI is similar to hay meadows, the minimum, the mean and the quartiles 

show higher values. The time series charts mirror those observations with higher peak values of 

the hay meadows in spring compared to grassland and a steadily high NDVI for improved 

meadows. 

The cropland class in Vayots Dzor is spectrally similar to grass land and hay meadows. 

Besides an exceptionally low standard deviation and low values across all statistics, the time series 

of the field crops and grassland class are very collinear as well. The NDVI time series of the field 

crop class in Sisian-Goris shows a similar trend (see appendix XIII). The classes of vine yards, fruit 

orchards and improved meadows also show a related phenology and mutual spectral signals. The 

NDVI time series shows that the phenology of improved meadows and fruit orchards are very 
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similar. This emphasizes the role of the grass signal for these classes. Both are irrigated and 

characterized by a strong herbaceous signal. The vine yard class has a less pronounced grass 

signal, likely due to a higher rock content in a drier substrate. The phenology of shrubland is very 

similar to that of grassland, but slightly higher in all spectral-temporal metrics. In Vayots Dzor, 

shrubland has lower NDVI values across the temporal statistics than the other woody classes, but 

a higher standard deviation than vine yards. In general, all woody classes have high NDVIs and it 

is increasing with canopy volume and density. Accordingly, forests show a distinct spectra-

temporal signal in comparison to the other classes. 

 
Figure 14 Knowledge capture of the spectral-temporal characteristics of the agricultural and semi-natural LULC classes 
for Vayots Dzor. (a) the box- and whisker-plots for the spectral-temporal metrics, and (b) the monthly time series as 
line chart. The outliers in the box-plots are depicted as grey dots. Both graphs were created in R using ggplot2. 
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The other original optical bands and the optical derivates such as NIR or NDMI show a 

matching trend (see appendix XIV & XV). The BSI shows an opposite behaviour than the NDVI and 

is especially pronounced for the field crops due to ploughing and fallow periods (see appendix 

XVI). The Tasseled Cap metrics show a lower potential for class separability than other indices. 

For Sisian-Goris, the spectral-temporal similarity of the shrubland and fruit orchard class is more 

pronounced and fruit orchards are characterized less with the herbaceous signal of the improved 

meadows (see appendix XIII).  

Based on the literature it is clear that the visual spectra have a lower ability to separate 

narrow classes (Mahdianpari et al., 2019). The box- and whisker plots in appendix XIV show that 

NIR and SWIR bands show the phenological and spectral differences but less pronounced than 

some of the indices (NDMI, MSAVI2 in appendix XV). The phenological class characteristics 

obtained from the time series are also more lucid for the vegetation indices than for the original 

NIR-band (see appendix XVII).  

The SAR data and the derived monthly time series show very similar temporal trends for 

the different agricultural and semi-natural classes (see figure 15). For the VV composites, only the 

hay meadows and the woodland class can be unambiguously distinguished from the other classes. 

The time series of the VH composites shows a corresponding behaviour with even less 

pronounced differences (see appendix XVII). 

 

 
Figure 15 Time series of the VV composites for the agricultural and semi-natural classes (source: own illustration). 
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In order to inform about the trends related to the topography and learn about the potential 

effects of including ancillary topographic data, the training data of the whole ROI (Vayots Dzor 

and Sisian-Goris) was used to sample the hill slope values derived from the digital elevation 

product. The classes were grouped in: (1) agricultural classes which include hay meadows, 

improved meadows, field crops, vine yards and fruit orchards; (2) semi-natural classes that 

include grassland, shrubland, forest and bare surfaces or sparse vegetation; and (3) other classes 

including the urban and water class. The box- and whisker-plot of figure 16 shows the dependency 

of the agricultural classes and the topography. While 75% of the agricultural classes have a slope 

of less than 10%, 75 % of the semi-natural classes have a slope of more than 10%. 

 

 

 

 

 

 

3.2. “Good choice” classification 

The “good choice” dataset is based on the observations from the classification trials with 

the multisource data (see section 3.3). The combined datasets delivered the most favourable map 

prediction in terms of user’s accuracies as priority mapping objective. The two sub-regions varied 

regarding an enhancement of the mapping accuracy when including multisource data. Based on 

the variations, the good choice dataset was adjusted to each of the sub-regions, because a 

detailed and accurate representation of the complex LULC was a main priority of this study. 

Sample count-based error matrices with area adjusted overall, producer’s and user’s accuracy 

estimates of the “good choice” classification for both sub-regions are shown in table 4. Vayots 

Dzor comprises 11 classes, Sisian-Goris only 10 classes due to the exclusion of the vine yard class. 

An overview of the RF feature importance can be obtained from the bar chart in appendix XVIII.  

Figure 16 Box- and whisker-plots illustrating 
the relation of land-use and land cover classes 
with the hill slope as topography metric 
(source: own illustration).  
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Table 4 Sample count-based error matrix with area-adjusted accuracy estimates and standard errors of the “good choice” 
classification. User’s accuracy (UA) and producer’s accuracy (PA) are shown besides and below the marginal totals respectively 
with the associated standard errors depicted in blue. Overall accuracy (OA) is shown in pink in the bottom right. Top: the 11 classes 
of Vayots Dzor. Bottom: the 10 classes of Sisian Goris. 

  Reference 

    GL HM IM FC VY FO SL WL SP W U ∑ 
UA 
(%) 

± 

Map GL 549 23 6 38 15 10 40 0 1 0 9 691 79,45 1,61 

  HM 21 186 5 6 0 0 1 0 0 0 0 219 84,93 2,45 

  IM 0 2 97 0 19 18 2 0 0 0 0 138 70,29 3,33 

  FC 6 3 8 127 15 3 0 0 1 0 0 163 77,91 2,96 

  VY 0 0 3 2 93 6 1 0 0 0 0 105 88,57 2,14 

  FO 1 0 62 6 46 159 2 0 0 0 1 277 57,40 3,12 

  SL 46 0 7 11 18 44 163 7 4 8 5 313 52,08 3,43 

  WL 0 0 1 0 0 2 2 68 0 0 1 74 91,89 3,13 

  SP 2 0 0 2 0 0 0 0 65 2 2 73 89,04 3,71 

  W 1 0 0 0 0 0 2 1 0 45 0 49 91,84 3,69 

  U 1 0 0 5 17 10 0 1 1 1 68 104 65,38 5,16 

  ∑ 627 214 189 197 223 252 213 77 72 56 86 2206   

  
PA 
(%) 

95,76 61,33 12,74 18,54 20,99 22,30 61,71 82,67 91,47 23,85 19,90 
  

OA 
(%) 

± 

 ± 0,02 0,55 1,83 0,51 1,13 1,18 0,34 2,78 0,63 17,17 2,84  76,23 1,27 

  

    GL HM IM FC FO SL WL SP W U ∑ 
UA 
(%) 

± 

Map GL 647 33 7 10 30 23 0 23 1 9 783 82,63 1,43 

  HM 28 243 5 13 2 1 0 0 0 0 292 83,22 2,19 

  IM 2 4 105 2 7 6 0 0 0 0 126 83,33 3,00 

  FC 11 12 4 223 2 0 0 1 0 0 253 88,14 2,00 

  FO 0 1 20 2 97 7 5 0 0 0 132 73,48 2,92 

  SL 18 0 14 7 69 152 9 1 0 5 275 55,27 3,46 

  WL 0 0 0 0 9 13 79 0 0 0 101 78,22 4,30 

  SP 0 0 0 0 0 0 0 73 0 7 80 91,25 2,83 

  W 1 0 0 0 1 2 0 0 62 1 67 92,54 3,34 

  U 0 0 0 4 12 3 0 3 0 69 91 75,82 4,51 

  ∑ 707 293 155 261 229 207 93 101 63 91 2200   

  
PA 
(%) 

96,97 70,33 8,10 84,73 11,39 58,33 91,70 66,54 85,73 29,63 
  

OA 
(%) 

± 

 ± 0,02 0,31 1,45 0,32 0,49 1,19 1,08 0,54 2,66 5,48  81,64 1,02 

 

The “good choice” classification delivers an overall mapping accuracy of 76.23% (±1.27%) 

and 81.64% (±1.02%) for Vayots Dzor and Sisian-Goris, respectively. The producer’s accuracies 

(i.e. the probability that a certain land cover of an area on the ground is classified accordingly) 

vary largely between some of the classes. Semi-natural LULC classes of Vayots Dzor including 
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grassland, hay meadows, shrubland and woodland as well as sparse vegetation show higher 

producer’s accuracies with 60-90%. In contrast, the agricultural and artificial classes including 

improved meadows, field crops, vine yards, fruit orchards as well as urban and water show lower 

producer’s accuracies with 15-25%. For Sisian-Goris, similar trends can be observed with some 

exemptions such as higher producer’s accuracies in case of the field crop and water classes. The 

high errors of omission of the artificial and agricultural classes in Vayots Dzor indicate limitations 

with a high proportion of samples that have been left out (omitted) and falsely classified.  

The grassland class shows a rather small omission error mainly from misclassification as hay 

meadows and shrubland. Hay meadows are in turn often misclassified as grassland. Improved 

meadows and fruit orchards are highly collinear resulting in low producer’s accuracies for both 

classes. Improved meadows were most often misclassified as orchards, but less vice versa. The 

low producer’s accuracies of the orchards are mainly due to confusion with the shrubland class 

and, to a smaller extent, with improved meadows and grassland. Vine yards also show profound 

mapping limitations and high omission errors due to the confusion with several classes but 

especially orchards, improved meadows and shrubland. Corresponding to the confusion of 

grassland as shrubland, the largest share of the shrubland reference samples are omitted as 

grassland. 

The map reliability is expressed by the user’s accuracy or the error of commission as its 

complementary measure and provides information of how often the class represented on the 

map will actually be present on the ground. The grassland and hay meadow class show an almost 

equal mapping reliability in both sub-regions with about 80% user’s accuracy and mutual class 

confusion. A small proportion of the map’s grassland class are falsely classified hay meadows, 

field crops, fruit orchards and shrubland. For both sub-regions, the user’s accuracy of improved 

meadows is diminished mainly by falsely classified vine yards and orchards.  

The error of commission for field crops in Vayots Dzor results from falsely classified map 

pixels actually belonging to grassland, vine yards or improved meadows. In Sisian-Goris there is 

far less confusion of field crops and those classes and rather an overestimation at the cost of 

grassland and hay meadows. Vine yards in Vayots Dzor only show a minor error of commission. 

In contrast, fruit orchards in Vayots Dzor are overestimated in particular by pixels that are actually 

vine yards and improved meadows. In Sisian-Goris, the user’s accuracy for fruit orchards is higher 
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and misclassifications come at the expense of both improved meadows and shrubland. Shrubland 

shows a low user’s accuracy in both sub-regions with considerable overestimation at the cost of 

grassland, orchards or vine yards. The map reliability of the urban class is also quite low with 

overestimates at the cost of fruit orchards in Sisian-Goris and fruit orchards and vine yards in 

Vayots Dzor. In Sisian-Goris, where vine yards were not included as a class, the user’s accuracy of 

improved meadows and fruit orchards is 83.33 and 73.47% respectively as opposed to 70.29 and 

57.4% in Vayots Dzor. Table 5 shows the area estimates with the associated standard errors in 

hectares for both sub-regions. 

Table 5 Area estimates of the 11 LULC classes of Vayots Dzor (VD) and the 10 classes of Sisian-Goris (SG) with the associated 
standard errors in hectares. 

 Class GL HM IM FC VY FO SL WL SP W U 

VD Area 
(ha) 

138092 14504 3929 13378 8269 9217 25722 4035 7745 1323 3664 

 ± 2645 1165 661 1496 1016 976 1715 281 426 313 769 

             

SG Area 
(ha) 

135928 26293 3516 23075 - 12696 14449 6913 14599 1427 4351 

 ± 2225 1280 626 842 - 1204 1105 374 1027 208 711 

 

Figure 17 shows small-scale map depictions of different agricultural landscapes within the 

study region as predicted by the “good choice” RF model. The area around Yeghegnadzor exhibits 

a large proportion of vine yards and fruit orchards (a & b). Based on a visual screening of the 

“good choice” map and Google Earth data in GEE, the impression emerges that the classification 

is more accurate the larger the plots. The vine yard plots for example which are commercially 

used seem to be more accurate than smaller plots within and around the communities. Due to 

the small-scale character within the villages, there is considerable confusion of mixed urban pixels 

with vine yards as in case of Maslishka village (see figure 17; b). The community of Rind in turn 

exhibits larger vine yard plots which could be mapped more accurate (see figure 17; west of a). 

Besides the plot sizes, successional cultivation stages may be responsible for difficulties regarding 

the mapping accuracies. Whereas fully developed plots of vine yards or orchards are mapped 

increasingly accurate, less developed plots with smaller plants (i.e. new plantations) show signs 

of confusion with improved meadows, field crops, bare or urban. Finally, the accuracy results 

suggest that the fruit orchards within the home gardens of the villages are slightly overestimated 

which can be observed across the study region.  
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Figure 17 Map with small-scale depictions of different agricultural landscapes as predicted by the “good choice” RF model for both 
regions Vayots Dzor (a-c) and Sisian-Goris (d-f) (source: own illustration). 

Subalpine landscapes with a high heterogeneity such as the area around Artavan village 

(figure 17; c) show a moderately well distinction between shrubland, forest, fruit orchards, hay 

meadows and grassland. With increasing altitude, the field crops class becomes rare and limited 

to single small plots within villages (see figure 17; c). There is evidence that the hay meadows are 

mapped with a high accuracy (i.e. 84% in Vayots Dzor). However, with increasing altitude the 

mowing signal seems to be less pronounced and the influence of livestock grazing activities 

appears to be responsible for some confusion of grassland as hay meadows and vice versa. Hay 

meadows within landscapes dominated by shrubs show less signs of confusion (see figure 17; c & 

f). Other more elevated areas with a high herbaceous net primary production such as the 

subalpine meadows on the slopes below Lake Sevlich also show less signs of confusion with 

grassland (see figure 17; d). Areas characterized by abundant smallholder farming and a high 

heterogeneity such as the landscape around Angeghakot give the impression of a successful 
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distinction between the various classes (see figure 17; e). However, with a closer look it seems 

that there is a certain degree of class confusion, in particular within very heterogenous, small-

scale managed areas. The field crop class seems to be mapped predominantly well with some 

exemptions where the separability between the crops and hay meadows appears to be distorted. 

Despite of the topographic data, some areas with very steep slope such as the canyon close to 

Tatev (see figure 17; f) show signs of confusion with the water and urban class. 

 
Figure 18 Thematic map showing the distribution of extensively used hay making areas across the different 
elevation zones in the Armenian Highlands (source: own illustration).   
 

The two thematic maps in figure 18 and 19 illustrate possible applications of the produced 

LULC data that can be considered as relevant in the given context of land use related challenges 

in Armenia. The monitoring of hay making as grassland use and the assessment of spatial 

dynamics such as increasing use close to settlements at the expense of hay making areas in more 

remote subalpine and alpine zones can be a of significant value regarding the adverse 

environmental effects of unbalanced pasture loads (see figure 18). 
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Wildlife management and conservation via the designation of protected areas is of 

particular relevance within the study region. The high typological detail of land use in the 

proposed mapping approach exhibits potential for the management of both conservation areas 

and wildlife corridors (see figure 19). This may include a spatial analysis of human activities 

affecting wildlife or an assessment of the probability of evolving challenges within the designation 

process of protected areas due to major land-use conflicts. 

 
Figure 19 Thematic map of land use within and around major protected areas (red) and wildlife corridors 
(green) (source: own illustration).  
 

3.3. Dataset classification trials 

The baseline dataset that includes only optical data already yielded acceptable mapping 

accuracies. With 77.15% and 81.51% for Vayots Dzor and Sisian-Goris respectively, the baseline 

classification yielded similar or slightly higher overall accuracies compared to the “good choice” 

classification. However the “good choice” prediction shows a higher user’s accuracy , highlighting 

the trade-off between producer’s and user’s accuracies. The sample count-based error matrices 

of the baseline classification with area adjusted accuracy estimates and associated standard 

errors for both sub-regions are provided in appendix XIX & XX. 
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Table 6 shows the accuracy estimates of the RF predictions based on the different input 

datasets for Vayots Dzor, table 7 for Sisian-Goris (see section 2.5 for dataset construction). The 

inclusion of the topography metrics led to a slight increase in the overall accuracy compared to 

the baseline dataset. The producer’s accuracy increased more pronounced for fruit orchards and 

sparse vegetation whereas it also decreased by 4% in case of hay meadows. The user’s accuracy 

increased more notably in case of hay meadows, field crops and fruit orchards and decreased by 

a small extent for improved meadows and sparse vegetation. This beneficial effect is however 

only the case for Vayots Dzor. The inclusion of topography metrics in Sisian-Goris led to a slight 

deterioration of the map prediction across the different accuracy estimates (table 7).  

Table 6 Accuracy estimates of the RF models with the different input datasets (1-7) for Vayots Dzor. 

   User's Accuracy (%) 

Datasets OA LULC Classes 

  (%) GL HM IM FC VY FO SL WL SP W U 

1: Baseline 77,15 81,48 81,74 66,67 71,78 87,62 51,99 52,72 82,43 80,82 91,84 55,77 

2: 1 + Topo 77,26 81,04 83,56 63,04 74,23 87,62 54,87 55,91 82,43 76,71 93,88 56,73 

3: 1 + S1 time series 76,63 81,62 76,71 66,67 66,26 82,86 40,43 55,27 85,14 75,34 87,76 68,27 

4a: 1 + S2 texture  75,96 80,75 83,11 67,39 73,62 85,71 52,71 46,96 81,08 80,82 95,92 61,54 

4b: 1 + S1 texture 76,52 80,90 81,74 67,39 71,78 84,76 46,93 53,99 82,43 73,97 89,80 53,85 

5: 1 + VIIRS 77,48 81,77 82,65 63,77 75,46 86,67 51,62 53,35 82,43 80,82 91,84 60,58 

6a: 1 + Indice Set 01 76,10 79,74 83,56 63,77 74,23 84,76 54,87 51,12 90,54 87,67 83,67 60,58 

6b: 1 + Indice Set 02 76,13 80,61 81,74 65,94 75,46 87,62 51,26 49,20 83,78 80,82 91,84 51,92 

6c: 1 + Indice Set 03 75,76 79,59 79,45 66,67 76,07 87,62 57,04 51,76 93,24 83,56 89,80 56,73 

7: ”Good Choice” 76,23 79,45 84,93 70,29 77,91 88,57 57,40 52,08 91,89 89,04 91,84 65,38 

  Producer's Accuracy (%) 

 OA LULC Classes 

 (%) GL HM IM FC VY FO SL WL SP W U 

1: Baseline 77,15 94,28 66,59 14,40 20,19 22,51 24,73 63,59 81,41 84,39 26,81 17,59 

2: 1 + Topo 77,26 94,33 62,52 12,97 20,82 20,52 28,43 63,36 83,06 88,93 27,80 17,01 

3: 1 + S1 time series 76,63 93,09 64,71 13,73 19,91 22,33 19,32 64,20 72,74 75,20 47,26 33,51 

4a: 1 + S2 texture 75,96 94,24 64,91 13,46 21,46 22,64 23,48 62,96 77,30 77,71 23,00 20,98 

4b: 1 + S1 texture 76,52 93,93 63,13 12,65 21,49 23,22 24,54 61,39 83,42 79,48 26,35 18,97 

5: 1 + VIIRS 77,48 94,25 66,09 12,43 21,60 22,53 28,22 63,57 81,23 84,41 27,73 26,90 

6a: 1 + Indice Set 01 76,10 95,14 59,70 12,66 20,69 17,73 20,94 63,10 74,65 84,31 32,68 19,95 

6b: 1 + Indice Set 02 76,13 94,34 66,51 12,82 19,88 22,02 21,54 61,88 73,68 85,48 29,65 14,91 

6c: 1 + Indice Set 03 75,76 95,48 59,27 12,11 21,10 19,83 20,93 66,04 73,03 87,59 24,47 15,28 

7: ”Good Choice”  76,23 95,76 61,33 12,74 18,54 20,99 22,30 61,71 82,67 91,47 23,85 19,90 
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The inclusion of the monthly SAR time series in Vayots Dzor deteriorated the accuracy of 

the RF classification slightly compared to the baseline map prediction. The overall accuracy 

decreased marginally. The user’s accuracy decreased more markedly for fruit orchards, vine 

yards, hay meadows and field crops but increased for urban fabric, shrubland and woodland. This 

beneficial effect of including SAR data could also be observed in Sisian-Goris. In contrast to Vayots 

Dzor, the overall accuracy slightly increased as well (see table 7). For fruit orchards, the user’s 

accuracy improved notably by around 7% and for urban structures by more than 10%. 

In Vayots Dzor, both optical and SAR texture metrics diminished the overall accuracy as 

opposed to the baseline. For optical texture metrics this effect was stronger. In contrast, it can be 

noted that for the agricultural target classes the mean user’s accuracies marginally improved in 

both regions with the optical texture metrics. In Sisian-Goris, optical texture metrics showed a 

slight enhancement of overall, user’s and producer’s accuracies. Contrarily, the SAR texture 

metrics generally reduced the accuracy metrics with some exemptions as in case of the user’s 

accuracy of shrubland or woodland where the inclusion lead to a small increase. 

The inclusion of nighttime lights in Vayots Dzor barely increased the overall accuracy by half 

a percent. However, the user’s accuracy increased as expected for the urban class and, more 

surprisingly, also for field crops due to a reduced confusion with grassland. In Sisian-Goris, the 

nighttime lights didn’t improve the different accuracy estimates with the exemption of a notable 

improvement of the user’s accuracy for the urban class. 

Adding normalized difference indices and spectral transformations generally enhanced the 

user’s accuracies of some of the classes, but slightly lowered overall accuracy in (exemption for 

index set 1 in Sisian-Goris). The lower overall accuracy results mainly from deteriorated 

producer’s accuracies. Single vegetation indices favoured the user’s accuracy of only some classes 

while diminishing the producer’s accuracies of most of the classes. A stronger improvement of 

user’s accuracies for single indices could be observed for the MNDWI and the field crop class as 

well as the EVI and BSI with the fruit orchard class (results not shown). In contrast, sets of indices 

provided a broader enhancement of the user’s accuracies in both sub-regions. 

  



 

 62 

Table 7 Accuracy estimates of the RF models with the different input datasets (1-7) for Sisian-Goris. 

   User's Accuracy (%) 

Datasets OA LULC Classes 

  (%) GL HM IM FC FO SL WL SP W U 

1: Baseline 81,51 83,78 80,14 69,84 85,38 66,67 56,73 78,22 82,50 89,55 63,74 

2: 1 + Topo 80,63 82,50 79,79 65,87 87,35 65,15 56,73 76,24 78,75 94,03 64,84 

3: 1 + S1 time series 81,70 83,91 79,45 64,29 86,17 73,48 58,91 79,21 82,50 86,57 74,73 

4a: 1 + S2 texture  81,92 84,55 77,40 71,43 87,35 68,94 56,36 78,22 81,25 89,55 65,22 

4b: 1 + S1 texture 81,45 83,78 78,42 64,29 86,56 65,15 59,27 79,21 77,50 89,55 63,74 

5: 1 + VIIRS 81,37 84,04 77,40 68,25 86,17 64,39 55,27 79,21 80,00 89,55 68,13 

6a: 1 + Indice Set 01 81,61 83,78 79,45 82,54 86,17 68,18 55,64 78,22 86,25 89,55 67,03 

6b: 1 + Indice Set 02 81,12 82,89 78,77 82,54 86,96 68,18 55,64 80,20 86,25 89,55 68,13 

6c: 1 + Indice Set 03 80,40 81,61 79,45 79,37 87,35 71,21 54,91 78,22% 87,50 95,52 74,73 

7: ”Good Choice” 81,64 82,63 83,22 83,33 88,14 73,48 55,27 78,22 91,25 92,54 75,82 

  Producer's Accuracy (%) 

 OA LULC Classes 

 (%) GL HM IM FC FO SL WL SP W U 

1: Baseline 81,51 95,55 69,75 8,15 74,83 14,69 55,23 91,76 71,60 72,21 24,17 

2: 1 + Topo 80,63 95,79 67,34 7,52 76,34 12,08 53,63 92,35 60,40 73,50 32,10 

3: 1 + S1 time series 81,70 95,63 69,56 7,54 74,45 14,19 61,26 91,11 67,02 100,00 41,32 

4a: 1 + S2 texture 81,92 95,36 71,06 7,59 77,87 14,04 56,41 92,43 71,64 82,45 25,91 

4b: 1 + S1 texture 81,45 95,35 68,69 7,23 76,44 13,45 57,74 92,27 67,06 85,19 25,05 

5: 1 + VIIRS 81,37 95,36 70,43 7,59 75,09 12,85 55,80 90,93 72,66 82,25 24,62 

6a: 1 + Indice Set 01 81,61 95,67 70,11 9,05 82,12 12,41 55,27 91,36 72,20 74,12 25,40 

6b: 1 + Indice Set 02 81,12 95,70 69,74 8,94 76,60 12,54 56,33 92,23 71,44 85,33 24,60 

6c: 1 + Indice Set 03 80,40 96,03 69,35 7,31 80,97 12,76 54,55 90,48 68,35 75,87 25,55 

7: ”Good Choice”  81,64 96,97 70,33 8,10 84,73 11,39 58,33 91,70 66,54 85,73 29,63 

 

Index set 1 including NDVI, BSI and NDWI resulted in a slightly lower overall accuracy in 

Vayots Dzor and a slightly higher overall accuracy in Sisian-Goris. Regarding the user’s accuracy 

of the target classes, fruit orchards, field crops and hay meadows increased in Vayots Dzor. In 

Sisian-Goris, Index set 1 enhanced user’s accuracy for improved meadows, field crops and fruit 

orchards, but slightly deteriorated user’s accuracy for hay meadows. 

An inclusion of tasselled cap metrics as the second set of indices yielded in a slightly higher 

mean user’s accuracy of the target classes for both sub-regions. However, the improvement by 

the tasselled cap inclusion is quite low compared to the baseline. The combination of five indices 

in set three most notably enhanced the user’s accuracies of both field crops and fruit orchards as 



 

 63 

well as the forest class for Vayots Dzor. Other classes showed only marginal effects. This is 

contrasting to the user’s accuracy results in Sisian-Goris. Here the third set did yield slightly 

smaller mean accuracies for the target classes than the first two sets of indices. However, the 

mean accuracy estimates still improved in comparison to the baseline. 

A beneficial combination of indices in terms of user’s accuracy was determined through the 

analysis of the effect on the mapping reliability as a priority objective for thematic maps. This 

combination of indices yielded the highest mean user’s accuracy for both sub-regions. The 

combination can be obtained from figure 10. Combined with the topography metrics and the 

nighttime lights, this set of indices was used for the “good choice” dataset for Vayots Dzor. 

Although the optical texture metrics did increase the user’s accuracies of some target classes it 

was not considered in the “good choice” dataset because the effect was not given in the 

combined dataset as opposed to the simple addition to the baseline dataset. The same applies 

for the SAR time series in Vayots Dzor. Based on the differences between the sub-regions 

regarding the contribution of the different datasets, the “good choice” dataset was adjusted to 

Sisian-Goris. Compared to Vayots Dzor, nighttime lights were excluded and optical texture metrics 

added. Despite the deterioration of accuracies by the topographic data, the data was kept due to 

apparent visual improvements of the map prediction.  

Compared to the baseline, the map reliability of the “good choice” classification in Vayots 

Dzor increased most for field crops and fruit orchards with about 6% as well as forest, urban and 

bare/ sparsely vegetated surfaces with almost 10%. Hay meadows, improved meadows and vine 

yards improved by about 3%, 4% and 1%, respectively. User’s accuracies of grassland and 

shrubland deteriorated slightly by about 2%. In Sisian-Goris, the enhancement was most 

pronounced for improved meadows with 13%, and fruit orchards with 7%, sparse vegetation with 

9% and urban fabric with 12%. The user accuracy decreased marginally for grassland and 

shrubland. 
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Figure 20 Bar chart illustrating the differences of the user’s accuracies between the different RF models for Vayots Dzor. The 
standard error estimates are added as whiskers. A full version of this chart with all LULC can be obtained from appendix XXI. 

Generally, the different dataset combinations show only small variations regarding the 

user’s accuracy as priority metric (see figure 20 & 21). The improvements of the user’s accuracy 

do not deliver a clear trend across the two sub-regions and show certain variations regarding the 

added value of the multisource data. Whereas in Vayots Dzor small improvements of different 

accuracy metrics could be observed for the ancillary topographic and nighttime lights data as well 

as specific sets of spectral derivates, the SAR time series and texture metrics lead to a reduced 

precision of the map predictions across all accuracy metrics. The Sentinel-2 texture metrics 

contribute to a small extent to the user’s accuracy of the map. In Sisian-Goris however the optical 

texture and the SAR time series do improve the mean user’s accuracy of the target classes. The 

topography metrics don’t show an unambiguous effect within the accuracy and the nighttime 

lights deteriorate mapping accuracies. The spectral derivates such as NDVI or the Tasseled Cap 

transformation are functioning as indicators for different surface conditions and consolidate 

spectral information of the original bands. As a result, single indicators tend to enhance the 

accuracy of some classes only whereas combinations might result in synergistic effects. The 

precision of the user’s accuracy estimates as provided by the standard errors is further limiting 

the relevance of the variations in the accuracy estimates between the different input datasets of 

the RF models (see figure 20 & 21). 
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Figure 21 Bar chart illustrating the differences of the user’s accuracies between the different RF models for Sisian-Goris. The 
standard error estimates are added as whiskers. A full version of this chart with all LULC can be obtained from appendix XXII. 

The map of figure 22 shows small-scale representations of different areas (a-g) illustrating 

apparent misclassifications for both the baseline (top tile) and the “good choice” prediction 

(bottom tile). Despite of a good user’s accuracy of grassland, the most abundant land cover class 

shows apparent spectral confusion with primarily shrubland but also with vine yards and the field 

crop class (see figure 22; a, b & g). The sparse vegetation/ bare class exhibits a continuum with 

the grassland and shows similar signs of confusion although more pronounced regarding the 

confusion with classes associated with a stronger spectral soil signal like vine yards, field crops 

and urban as opposed to shrubland. The inclusion of the topography metrics, the optical texture 

metrics as well as indices and nighttime lights mitigate these misclassifications to some extent. 

However, the spectral confusion between grassland and shrubland seems to be more persistent 

(see figure 22; b). 

The topography metrics appear to effectively suppress the confusion in areas with the 

highest elevation and steepest terrain. The optical texture metrics, nighttime lights as well as the 

built-up index contribute to a reduction of confusion between urban and bare surfaces (see figure 

22; a & e). Spectral confusion between shrubland and fruit orchards is further mitigated by 

vegetation indices and optical texture metrics (see figure 22; c). The reservoirs in the study region 

are prone for confusion with field crops due to temporal variability of the water level. This is also 
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partially mitigated by the inclusion of vegetation indices and topography metrics (see figure 22; 

c). The topography metrics as well as the indices also enhance the continuity of the field crop 

class from a more noisy prediction with gaps towards a more coherent classification result (see 

figure 22; f). 

 
Figure 22 Map with small-scale representations of different areas (a-g) illustrating apparent misclassifications and enhancment 
for both the baseline (top tile) and the “good choice” prediction (bottom tile) (source: own illustration). 

3.4. Spatial autocorrelation 

Spatial autocorrelation could not be analysed for the whole study region due to 

computational constraints. Instead, seven ROIs of 30 km x 30 km were defined across the study 

region that cover different landscapes encountered (see appendix XI). Moran’s I statistic was 

calculated for each ROI and plotted against pixel distance (figure 23). ROI 1 covers valleys with 

clusters of vine yards and fruit orchards, ROI 2 a landscape of grassland and hay meadows, ROI 3 

shrubland and grassland, ROI 4 grassland, ROI 5 valleys with settlements, field crops and hay 

meadows, ROI 6 forest, shrubland and crop land, and ROI 7 large agricultural fields.  
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For some of the ROIs, values for Moran’s I are generally higher and decrease less 

pronounced with increasing distance. This is in particular the case for the landscapes of steppe 

and alpine grasslands (ROI 4) as well as for shrubland (ROI 3) and, more surprisingly, also in the 

case of forest and cropland (ROI 6) and a heterogenous landscape with settlements, field crops 

and hay meadows (ROI 5). Contrastingly, other hay making areas (ROI 2) show lower values of 

Moran’s I that decrease more pronounced with increasing distance. Against the initial 

expectation, the clustered areas of vine yards and fruit orchards (ROI 1) and the extended field 

crop landscape (ROI 7) also show low spatial autocorrelation. 

 
Figure 23 Moran’s I values for the different environments (ROI 1-7) plotted against increasing pixel distance.  

From the curve, Moran’s I value ranges can be derived for a certain distance between pixels. 

For neighboring pixels with a distance of 0 pixels, the range of Moran’s I is between 0.6 and 0.8 

for all ROI. With increasing distance, the minimum and maximum values decrease, while the range 

increases first, and from a distance of about 20 pixels, decreases again.  

The Moran’s I range is used to derive the spatial autocorrelation present in the validation 

sample. In this study, the minimum distance between validation samples was set to 500 m for all 

classes, except for vine yards and improved meadows, where it was set to 250 m as their limited 

distribution otherwise wouldn’t allow to sample enough points. As one pixel corresponds to 20 

m distance, this results in a Moran’s I range of 0.15 to 0.44. It can be expected, that for the more 

widely distributed grassland, shrubland or hay meadows, spatial autocorrelation with values 

around 0.4 is affecting the validation sample. In the case of more heterogeneously distributed 
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classes, spatial autocorrelation of around 0.15 is can be expected in the validation sample. For 

vine yard and improved meadow validation samples, Moran’s I has values of around 0.2. The 

results show that the value ranges of spatial autocorrelation for the given validation data are 

within the limits of a low to moderate positive spatial autocorrelation and support a reliable 

accuracy assessment. 

4. Discussion 

The proposed classification system delivers an accurate LULC map with a detailed 

representation of the complex smallholder farming landscapes within the study region. Based on 

comprehensive classification trials the effects of multisource data were evaluated to derive a 

“good choice” input dataset with the most favourable map reliability across LULC classes. The 

optical bands alone did already achieve good accuracies and apparent confusion could be further 

mitigated using spectral derivates and ancillary data. The effect of the multisource data regarding 

the added value for classification are however relatively small. This indicates the limitations in 

respect to other factors such as the spatial or temporal resolution. The proposed simple 

classification system exhibits practicality regarding its application and some potential regarding 

its transferability. The produced map product provides information on the distribution and the 

extent of the LULC classes and indicates the nature value of the landscapes. The classified data 

further shows great relevance in respect to urging land-use challenges in the Armenian context. 

Besides these certain potentials of the applied mapping approach the results of this study indicate 

several limitations regarding the classification of mountainous and complex smallholder farming 

landscapes. Some of the limitations may be however overcome in a rather uncomplicated fashion 

by adapting the classification system without sacrificing the simplicity and the practicality. 

In the following, the results of the LULC classification are discussed elaborating on potentials 

and limitations of the proposed mapping approach. The mapping accuracies of the classification 

trials and the added value of multisource data for map predictions are evaluated. The limitations 

regarding the spatial, temporal and spectral resolution are further addressed and put in context 

with significant mapping efforts of other studies. Implications related to the dimensionality of the 

RF input dataset and limitations regarding both training and validation data are noted and 

suggestions to overcome such limitations are provided. Finally, the practicality and transferability 
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of the classification system is assessed and some applications of the LULC product are reviewed 

in the context of current land-use challenges in Armenia. 

4.1. Mapping accuracies 

Accuracy of agricultural target classes 

With an overall accuracy of 76% and 82% for Vayots Dzor and Sisian-Goris respectively the 

map predictions of the “good choice” RF model are far from random. However, the producer’s 

accuracies and user’s accuracies vary substantially across classes due to the spectral narrowness 

and high collinearity of the target classes. Despite mapping limitations indicated by low 

producer’s accuracies, the proposed approach delivers user’s accuracies ranging from 57% to 88% 

in both regions. The low accuracies of some classes need to be put in context with regular 

mapping constraints of difficult classes such as transitional classes (e.g. shrubland). The mapping 

limitations causing low accuracies are discussed for specific classes in the following. 

Sparse woody vegetation is usually associated with a pronounced herbaceous layer. The 

collinearity of transitional classes with both a signal of woody vegetation and an herbaceous 

signal seems to limit a more accurate distinction. Irrigation contributes to a clearer separability 

of managed classes such as fruit orchards and improved meadows from unmanaged classes, but 

hampers a more accurate distinction between irrigated classes due to the strong herbaceous 

reflectance signal. Varying successional stages of the woody vegetation within classes further 

contributes to this. This can be observed for fruit orchards where more recent plantings are hard 

to discriminate from improved meadows.  

Due to the extensive management, spectral signals of smallholder agriculture are usually 

weak resulting in a poor separability across management regimes. Nevertheless, hay meadows 

and field crops show lower errors of commission and omission of around 10-30%. Yet, there is a 

very clear difference of the producer’s accuracy between the two regions for field crops with 

18.5% in Vayots Dzor and 84.7% in Sisian-Goris. This could be explained by more intensive 

cultivation management in parts of Syunik with larger farm sizes and larger fields as opposed to 

marginal and extensive cropping of grains and vegetables in Vayots Dzor (see figure 6 in section 

2.1). The increased class dimensionality in Vayots Dzor in combination with these differences in 
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farming systems is most likely contributing to the differences in overall but also user’s and 

producer’s accuracies between both regions. 

Added value of multisource data 

Although still prevalent in the “best choice” classification, the inclusion of multisource data 

could partially address these limitations and improved user’s accuracies of some target classes. 

Regarding the use of spectral derivates, the results of this study appear to be in line with 

the literature. As in a case study of orchard mapping in the Maipo valley in Chile, the accuracy 

estimates for the different datasets suggest that a small number of indices in addition to the 

original optical bands do not improve the accuracy as opposed to using the optical spectral bands 

only (Peña, Liao and Brenning, 2017). In fact, the baseline already yields quite satisfactory 

accuracies. Yet, when using a combination of many indices in addition to the original spectra, 

accuracies improve more substantially. Additional to the explorations presented in this study, 

trials could be performed using only indices without optical spectra or trials that include 

additional band spectra of the Sentinel-2 sensor (i.e. the red edge bands). 

Against initial expectations, the combination of optical and SAR imagery did not improve 

mapping accuracies. Both regions show small variations in respect to this effect. A slight 

deterioration in Vayots Dzor and a marginal improvement in Sisian-Goris can be observed. The 

accuracies of both regions suggest that the SAR time series may be beneficial for the mapping of 

sparse woody vegetation as it consistently enhanced user’s and producer’s accuracies for 

shrubland in both regions. This might also explain the increased accuracy of fruit orchards in 

Vayots Dzor, where scattered fruit and nut trees are a dominant land use. This would also verify 

suggestions from former studies regarding the added value of a combination of optical and SAR 

data (Van Tricht et al., 2018; Brinkhoff, Vardanega and Robson, 2020). Possible factors which 

might limit a beneficial effect of the complementary information provided by combined data 

could be either the high dimensionality of the input dataset or the low power of discrimination 

due to insufficient pre-processing of the SAR data. 

The use of ancillary data boosted classification accuracies depending on the data type and 

the specific class. The topography metrics show a high RF feature importance and descriptive 

statistics suggest that the inclusion is beneficial for the distinction of managed and semi-natural 
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classes. However, mapping accuracies do not show clear tendencies with only marginal 

improvements in Vayots Dzor and slight deterioration in Sisian-Goris. Despite these findings, the 

use of topography metrics in complex terrain can be encouraged to complement optical imagery 

in RF models. This is based on previous work (e.g. Adepoju and Adelabu, 2020) and apparent 

visual effects within this study. It is possible that the discriminative power of the topography 

metrics is lower, with a larger training sample and highly dimensional input data resulting in a 

reduced explanatory importance of the topography metrics. The nighttime lights showed a 

beneficial effect regarding the distinction of urban structures from bare or sparsely vegetated 

land cover and fallow fields. In case of the texture metrics, only the optical texture metrics had a 

positive effect on the map reliability. The SAR texture could be affected by backscattering or 

compositing issues. The effect of texture might generally be limited due to insufficient spatial 

resolution (10-20m) to characterize important structures, of perennial crops for example. It 

should be tested in future studies, whether texture metrics derived from VHSR imagery could 

overcome such limitations. 

Overall, the combination of optical spectra and derivates as well as radar and other 

multisource data only had limited effects on the performance of the RF predictions. Certain 

classes benefited whereas other classes faced drawbacks. When combining different beneficial 

input data within a “good choice” dataset, synergies can be used to attain more profound 

improvements of model predictions with special regards to the user’s accuracy as priority 

mapping objective. In this case, the improvements of user’s accuracies between the baseline 

dataset and the “good choice” dataset have a limited range from -1% to +13% with ±3% precision. 

These limitations together with partially low producer’s accuracy reflect the difficulties of 

mapping smallholder land use in a complex mountainous landscape. Due to the small variations 

across the datasets, the differences were not tested for statistical significance in this study which 

may be a certain shortcoming. Although the precision of the accuracy estimates can indicate if 

the difference is significant, there is no statistical proof. 

4.2. Limitations and potential of classification system 

The low effect of the multisource data inclusion highlights other possible limitations 

regarding the classification approach and RF input data. This mainly includes considerations of 
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increased spatial, temporal and spectral resolution, but also whether to use a pixel- or object-

based approach, to apply a more sophisticated classifier, to use a hierarchical and more 

automated mapping approach or to improve the collection of training data. In the following this 

will be discussed briefly and put in context with the results of this work and other similar studies. 

The contextual view to other studies can however not be interpreted as comparison given the 

multitude of methodologically varying LULC classification approaches. The practicality and 

transferability of the applied system are further evaluated. Table 8 summarizes advantages and 

disadvantages of the proposed mapping approach. 

Table 8 Advantages and disadvantages of the proposed mapping approach. 

Advantages Disadvantages 

Open source data & software Complicated validation sampling scheme 

Cohesive LULC mapping (target & by-product classes) Low degree of automation & labour intensive 

Information on class specific confusion Interpreter bias & lack of ground truth 

Relatively simple and effective classification system Accuracy limitations 

No need for detailed ground truth assessment Limited typological detail 

Benefits of multisource and ancillary data 
Unexplored spectral, temporal and spatial potential of 

Sentinel-2 

Transferability & adjustability High dimensionality of dataset 

 

Considerations of spatial resolution 

The spatial resolution seems to be a major limiting factor for an accurate and detailed map 

representation of mountainous smallholder farming in Armenia. The highly fragmented and 

patchy land use, small field sizes and mixed farming activities are clearly putting constraints on 

the classification in some areas. This is especially the case for the home gardens and small fields 

in settlements and valleys of the study region. 

The minimum mapping unit within this study is one pixel, following the spatial resolution of 

the optical Sentinel-2 spectra (20m). The smallest feature that could be possibly mapped would 

be therefore 20 m x 20 m or 0.04 ha. A feature with a size of 0.01 to 0.05 ha may not fall entirely 
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within one given pixel and could be split among as many as four pixels. The feature would 

therefore only make up a minority of those pixels with no sufficient dominance to be sensed 

clearly. In case of smallholder farming with field sizes as small as 0.05 hectares, the minimum 

mapping unit would need to be 10 m x 10 m pixels to allow a 4x4 pixel unit to entirely contain 

such small features (Herold, 2011).  

In respect to spatial resolution Sentinel-2, offers unexplored potential providing the visual 

RGB spectra and a broader NIR band with a spatial resolution of 10 meters. These bands may be 

used to pan-sharpen the other spectral bands (Verma and Jana, 2019). With many simple NDIs 

using the red and infrared bands only, the proposed mapping approach could be easily adapted 

to this increased resolution. Yet, the lack of multiple spectra might also limit mapping 

improvements. Other VHSR sensors mainly acquire images in the RGB and NIR spectra, but the 

increased spatial and temporal resolution has high potential for mapping efforts. In case of VHSR 

imagery, object based approaches with some sort of spatial and semantic segmentation are often 

necessary to take full advantage of their spatial and contextual information (Lebourgeois et al., 

2017; Du et al., 2019).  

Considerations of temporal resolution 

The monthly temporal resolution of the time series used in this study may be too coarse for 

a detailed representation of the phenological differences and variations in management regimes 

between classes. The detection of the mowing events for hay meadows can be hampered through 

the low temporal resolution possibly blurring the management signal. Depending on cutting 

intensity and recovery rate of the vegetation this issue could be amplified (Griffiths et al., 2020). 

Vice versa, a reduction of biomass due to livestock grazing for example could be mistaken with 

the abrupt cutting intervention with insufficient temporal detail. This is in line with findings from 

studies on grassland use and use intensities regarding hay making in Switzerland (Kolecka et al., 

2018) and Germany (Griffiths et al., 2020). Kolecka et al. (2018) mapped 4 different grassland use 

intensities at a parcel level using Sentinel-2 data and correctly detected 77% of the mowing 

events. They showed that a lower temporal resolution diminishes accuracies and that parcels with 

high mowing frequencies are especially sensitive to a removal of image dates. In Germany, 

Griffiths et al. (2020) mapped 5 different mowing intensity classes using the harmonized Landsat-

Sentinel dataset and observed higher omission errors for pixels that only experienced a single 
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mowing event. They emphasize the importance of temporal resolution and short compositing 

intervals for the time series to not omit mowing events. 

In respect to the five days revisit time of Sentinel-2 and the relatively low cloud 

contamination, the optical time series in this study could be calculated with an increased 

temporal density (e.g. 10-day composites) to cope with this limitation. Many recent detailed LULC 

studies use short temporal binning intervals and dense time series. Griffiths, Nendel and Hostert 

(2019) used the harmonized Landsat-Sentinel dataset from NASA and derived a gap-filled dense 

10-day time series to map 12 different agricultural and semi-natural classes across Germany and 

achieved an overall mapping accuracy of 81%. Rufin et al. (2019) explored time series binning for 

cropping practice discrimination in Turkey, showing that quarterly binning of spectral-temporal 

metrics yields higher mapping accuracies compared to annual binning. They also produced a 

dense gap-filled 8-day time series of the Tasseled Cap components. Both approaches resulted in 

overall accuracies exceeding 90%. 

Considerations of spectral resolution 

Finally, there is some unexploited potential regarding the spectral resolution within the 

proposed classification system. In this study, only the narrow NIR band (band 8A) was considered 

for the calculation of the spectral derivates and as band input for the different layerstacks. 

However, Sentinel-2 offers an additional broader NIR band and red edge bands. This multi-

spectral ability in the near infrared could be used to further enhance the mapping accuracy. 

Griffiths, Nendel and Hostert (2019) showed that an inclusion of the red edge band of Sentinel-2 

and a simple proxy for the missing red edge observations of Landsat-8 improves mapping 

performance for both semi-natural and crop classes. 

Limitations of dimensionality 

With original spectral bands, spectral derivates, derived spectral-temporal metrics and 

texture metrics as well as the monthly time series and ancillary data, the dimensionality of the 

input dataset is likely to limit the ability of the RF model to accurately predict the LULC classes. 

Although RF is largely resistant to overfitting and generally capable to process large amounts of 

multivariate or uncorrelated data, an increase in the dimensionality of the input dataset may 

require a substantially larger training sample size in order to ensure sufficient accuracies (Belgiu 
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and Drăgu, 2016). Feature selection on the basis of feature importance or a Principle Component 

Analysis (PCA) are widely used to reduce data dimensionality and overcome negative effects on 

mapping accuracies. The provided feature importance of the RF models in GEE is a mean to inform 

about dimensionality issues (see appendix XVIII), however, a simple reduction of the input dataset 

based on this feature importance alone was avoided because it was not clear how it is derived. 

The calculation of a PCA, a spectral rotation that takes spectrally correlated image data and 

outputs uncorrelated data, was limited  by the size of the datasets within GEE and therefore not 

applied (GEE, no date a). 

Limitations of typological detail, training and validation data 

The field work restrictions due to the COVID-19 pandemic caused certain limitations 

regarding the thematic detail of the class typology and uncertainties for both training and 

validation data. The lack of reference data is limiting both increased typological detail and 

unbiased accuracy and area estimates. Because the methodology is designed to acquire training 

and validation data by simply interpreting remotely sensed data, the approach may face serious 

challenges in respect to uncertainties of class membership assignment. This largely depends on 

the experience and skills of the interpreter and level of detail required by the classification system 

(Congalton and Green, 2019). Interpreter bias is therefore expected to have some impact on the 

mapping efforts of this study. 

The proposed classification system was primarily designed to cope with these limitations 

and measures have been implemented that ensure coherent and valid training and validation 

samples. Without the immediate necessity of field work, the assessment of class membership is 

solely based on remote assessment and visual interpretation of multi-temporal VHSR images as 

well as other available spatial-temporal data. The independence from detailed reference data or 

ground visits can also be considered a strength of the proposed class typology. The thematic detail 

could be further increased with data gathered in field trips. Given the importance of the training 

and validation stage to direct the classification and evaluate the map prediction, the collection of 

training and validation data was applied carefully with considerations regarding a right balance, 

class specific representativeness and spatial autocorrelation to ensure a comprehensive 

collection scheme and high-quality samples. 
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The collection of training data within this study is very time consuming. RF generally 

requires a large training sample for highly dimensional datasets. The work-load may be reduced 

by implementing a sequential mapping approach using thresholds and image masking. However, 

the development of such approaches usually requires a-priori available geospatial and spectral 

data to explore thresholds and conceptualize a sequential masking procedure following certain 

assumptions. This could be applied in future work, possibly building upon the gathered and 

produced data of this study. 

Trade-off: practicality and ease of application vs. mapping accuracy 

The proposed simple pixel-based classification system makes use of pre-processed and 

readily usable intra-annual multi-temporal and multi-spectral optical and SAR data as well as 

ancillary data within GEE. This offers great practicality which can be considered advantageous 

compared to the use of VHSR imagery as well as complex and labour-intensive object-based or 

hierarchical approaches. The trade-off between workload and accuracy is becoming clearer 

though when comparing the rather simple classification system of this study to more 

sophisticated approaches in other studies. Lebourgeois et al. (2017) for example applied a 

hierarchical, object-based mapping approach of smallholder agriculture with simulated Sentinel-

2 data in Madagascar. Despite the high degree of typological detail, they achieved high accuracies 

across crop and non-crop domains. With increasing detail, the accuracy only decreased 

substantially for the crop domain, highlighting the difficulties of mapping smallholder agriculture. 

Van Tricht et al. (2018) also applied a hierarchical classification approach combining optical and 

radar data to map 12 crop classes and three by-product classes in a complex agricultural 

landscape in Belgium, achieving a maximum overall mapping accuracy of 82%. 

Object-based classification is commonly considered to provide improved performance 

compared to pixel-based classification (Stefanski et al., 2014; Brinkhoff, Vardanega and Robson, 

2020). However, spatial segmentation is time consuming and the application for agricultural 

mapping is mainly used for intensively managed landscapes with larger field sizes. Pixel-based 

approaches are preferred for fields that are around or smaller than a pixel (Jain et al., 2013). In 

regions where small-scale agriculture is prevalent, pixel-based methods may be advantageous or 

equal in terms of accuracies compared to object-based analysis (Yin et al., 2018, 2019). Rufin et 
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al. (2019) emphasizes that a pixel-based approach is not restricted by MMUs and allows capturing 

small parcels in fragmented landscapes. 

The necessity of spatial segmentation in classification systems based on VHSR imagery is 

limiting the applicability. Another limitation for the practicality is that VHSR imagery is mostly only 

free of charge with a low degree of pre-processing. This requires additional workload as opposed 

to the use of readily usable data products provided in GEE. In order to handle the large data 

amount and the spatial complexity of VHSR imagery, more sophisticated classification approaches 

are often applied. Besides deep learning applications, model stacking can be used to assess the 

LULC of smallholder-dominated and complex landscapes in VHSR imagery (Aguilar et al., 2018; Du 

et al., 2019). Aguilar et al. (2018) mapped five different crops in a smallholder farming landscape 

in Mali achieving an overall accuracy of 76% from a prediction of 75 classifiers mining multi-

temporal optical data from Worldview-2. 

The proposed classification approach delivers an all-inclusive representation of the 

mountainous smallholder farming landscape. The cohesive character of the class typology 

provides spatially explicit representations of both target classes and by-product classes without 

the need of an empty or undefined class (i.e. “other” LULC). This requires the allocation of all 

pixels to the specified classes, even if only marginally separable. The consideration of coherent 

classes in order to provide “the entire picture” increases the class dimensionality and thus 

diminishes the mapping accuracy. Such cohesive and holistic mapping efforts can be however 

beneficial for applied research. 

Besides supervised classification, LULC datasets can be created by manual digitizing as in 

the case of the CORINE land cover. It is de facto the standard for LULC monitoring at the pan-

European level and the national teams of experts are assessing the LULC based on the CORINE 

nomenclature (44 classes), an MMU of 25 ha and varying methods (Aune-Lundberg and Strand, 

2021). There is a recent pilot project to extend the CORINE database in the eastern partnership 

countries including the Caucasus (EEA, 2016). Although the dataset exhibits a mapping accuracy 

of around 87%, the low resolution usually makes it less relevant for use at the national level. The 

nomenclature further insufficiently distinguishes between land cover and land use and the MMU 

makes it necessary to use mixed classes and omit detail (Aune-Lundberg and Strand, 2021). 
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Considering the given context of detailed LULC mapping the limitations and potentials of 

this study become clearer. Many of the above-mentioned studies achieved higher accuracies due 

to more complex but thus also more labour-intensive approaches such as image fusion, model 

stacking, hierarchical approaches, dense gap-filled time series, object-based methods and the use 

of VHSR imagery. Yet, some practical measures which could be considered to improve the 

classification system without sacrificing its potential regarding the applicability and simplicity 

have also been identified. This includes quarterly binning of spectral-temporal metrics and a 10-

day time series, the use of red edge spectra as well as optical bands with a spatial resolution of 

10 meters and feature selection for RF. 

Transferability of the classification system 

The classification system exhibits some potential regarding the transferability to other 

smallholder dominated and complex landscapes as well as more intensively used agricultural 

areas. As demonstrated for the two sub-regions of this study, both the class typology and the 

dataset can be adjusted to the specific situation. Although the mapping accuracy is decreasing 

with increasing class dimensionality, the flexibility of the typology allows the aggregation of 

classes in case the thematic detail was too high to achieve satisfactory accuracies. Thus, on a 

municipal level, the approach can be transferred and adjusted with a minimum detail level as 

baseline and a highly thematic ceiling. The class typology is largely generic and follows basic 

assumptions about management systems as well as commonly used LULC classes, supporting 

transferability. 

The cropland and hay meadow classes for example are based on the spectral-temporal 

signal of the management interventions of ploughing and hay making. This management is 

commonly practiced and the associated signal may be sensed in any region. Further, classes as 

hay meadows can also be condensed by aggregating all mowing intensities into one class, or 

thematically increased by differentiating different mowing frequencies as different classes and 

hence linked to classification systems on broader scales (Verma and Jana, 2019). For the area of 

this study, a differentiation between the extensively used hay meadows (cut one time) and the 

intensively used and irrigated improved meadows seemed sufficient. 

The stratification of the study region in agroecological zones was done in order to ensure a 

comprehensive training sample and achieve high mapping accuracies. Stratification may put 
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constraints on transferring the approach to smaller geographical scales (e.g. continental), but 

could be beneficial for regional studies at a larger scale. It can be in particular interesting for areas 

similar to the study region featuring mountainous and heterogenous landscapes with a high 

spatial and spectral complexity. This can be useful to overcome classification limitations in respect 

to spectral and spatial differences along environmental gradients and guarantee accurate map 

predictions across regions. With a stratification based on municipal districts, the data can be 

analysed at a greater depth enabling customized options for local decision makers. The main 

objective within this study was a high accuracy and detail for a map representation on a regional 

scale. This could be ensured by the minor adjustments of the classification system in terms of RF 

input data and class depth. Yet, such adjustments contribute to a less intuitive and more labour-

intensive transferability of the mapping approach. 

The application of the exact same classification system across different regions can be 

challenging regarding variations of spatial complexity and may require an adjustment of the 

system (Hast and Mehari, 2016). Training-signature-based classification systems generally face 

limitations regarding transferability as they require repetitive training sampling for every region 

or scene. This is very tedious and time-consuming and a disadvantage compared to rule-based 

classification processes. However, depending on the complexity of the data (i.e. VHRS) and sensed 

environments, defining a fully reliable rule set may be significantly limited due to spectral and 

spatial differences (Hussain and Shan, 2016). For less complex data, rule inheritance of 

classification systems and learning transferability (i.e. use of labeled data from auxiliary domains 

for learning in another domain where labeled data is scarce or absent) can be promising ways 

forward to provide a better model transferability (Hussain and Shan, 2016; Sukhija, Krishnan and 

Kumar, 2018). 

4.3. Applications of LULC product 

As described previously, detailed mapping of smallholder agriculture in Armenia has a 

special relevance to address current challenges. This particularly concerns the livelihoods of the 

rural population on the one hand and ecosystem services as provided by intact biodiversity of 

resilient mountainous ecosystem on the other hand. The produced LULC map delivers inherent 

information on the intensity within the agricultural target land use as well as class coherence with 



 

 80 

a rich semi-natural land-cover by-product. This dataset may be further used to assess the nature 

value of mountainous farmland in Armenia. A simple application could be the assessment of 

spatial patterns of hay making areas such as comparing hay cutting close to settlements with 

more remote subalpine zones (see figure 18). More complex analysis, utilizing the full information 

level of the dataset, could be multi-criteria weighted overlays for spatial-explicit modelling of the 

nature value of smallholder dominated landscapes. The nature value of farmland may be a 

relevant concept to combine and balance the interests of agricultural production and landscape 

conservation. 

Current plans regarding land use in Armenia require spatially explicit and detailed 

information at hand for policy- and decision-makers in order to carefully plan actions and evaluate 

potentials and trade-offs. Afforestation, land consolidation and sustainable intensification as well 

as wildlife conservation are urging tasks but decisions should be based on a comprehensive 

knowledge base of LULC and its dynamics. As part of the GAtES project, this study adds to previous 

project-studies on LULC mapping, energy use of rural communities, afforestation scenarios, and 

public participation mapping of ecosystem services (Harutyunyan, Petrosyan, et al., 2019; 

Harutyunyan, Pfeiffer, et al., 2019; Harutyunyan, Schlaffer, et al., 2019; Schulte and Harutyunyan, 

2020). The strong relation to land system science enables to connect to remote sensing work on 

post-soviet land-use dynamics of a research joint including scientists from the University of 

Copenhagen, the Humboldt University and the University of Wisconsin-Madison. This work may 

complement existing remote sensing work in the Caucasus on long term LULC change, habitat 

suitability of mountain ungulates or landscape connectivity (Bleyhl et al., 2017; Buchner et al., 

2020; Kuemmerle et al., 2020). 

Wildlife management and corridor planning is of considerable importance within the study 

area and the high level of typological detail of the LULC product exhibits potential for corridor 

management and monitoring of different human activities affecting wildlife (see figure 19). For 

protected areas, land-use pressures could be assessed to direct decision making within planning 

processes for new protected areas. An example for a promising conservation project within the 

study area is the Arpa Protected Landscape, a community lead protected area which includes the 

communities of Khachik, Gnishik and Areni. The initiative uses contractual nature conservation 

agreements and a clear set of processes to fund ecologically sustainable land use. Thus, it seeks 
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to address land-use issues by supporting and empowering local communities and directly 

including them in conservation efforts (Kuntz, 2019). 

Finally, the LULC data may contribute to improve livelihoods of the smallholder farmers and 

the efficiency of agricultural land use in Armenia. Land consolidation and sustainable 

intensification schemes can benefit from detailed LULC data. Since the classification system is 

applied with a pixel-based approach and not on plot level, the data cannot inform on 

fragmentation of the land use. However, the information on nature value of the mountainous 

small-scale farming systems can deliver valuable insights on a landscape level and may thus 

facilitate and direct decision making. It can be used as an indication of areas where sustainable 

intensification or land consolidation may make sense and where a conservation of the system due 

to a higher nature value might be preferred. 

5. Conclusion 

The proposed approach is a first step towards a detailed, spatially explicit assessment of 

LULC in the smallholder-dominated mountainous and complex landscapes of the Armenian 

Highlands. The LULC product delivers an accurate representation of the landscape’s complexity 

and has great potential for various current challenges in Armenia regarding land use, biodiversity 

and ecosystem services. The classified map successfully indicates the nature value of the 

smallholder farming systems due to the detailed and cohesive character of LULC class typology 

featuring inherent information on land-use intensities and rich semi-natural and artificial by-

product classes. The outcomes of LULC classification indicate the major constraints of assessing 

narrow and highly colinear classes of such a detailed class typology.  

The mapping results further illustrate the degree of usefulness of the multisource data 

products to aid the LULC classification and improve accuracies. A combination of optical and SAR 

data didn’t yield a general accuracy enhancement apart from a positive trend for woody 

vegetation. Ancillary data such as topography metrics, nighttime lights and optical texture metrics 

enhanced the map predictions partially and were therefore considered within the “good choice” 

classification. Single spectral derivates (i.e. NDIs) only favoured single classes while the inclusion 

of a set of derivates led to a more profound enhancement of mapping accuracies across classes. 

The overall effect of the multisource data on the mapping accuracies is however relatively low 
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and varies between the sub-regions. These limitations indicate that other factors such as spatial 

or temporal resolution may constrain higher mapping accuracies. An increased spatial and 

temporal resolution is likely to further improve the ability of RF to capture the small agricultural 

plots and the phenological differences between classes. This can be achieved in a rather 

uncomplicated fashion by constructing shorter temporal bins or using the Sentinel-2 bands with 

a spatial resolution of 10 m. 

In general, the classic pixel-based classification approach is simple, practical and effective 

while still delivering promising results. In comparison with other, more complex classification 

systems, the proposed approach is straightforward and relatively easy to apply. It doesn’t require 

detailed reference data, satellite imagery purchase, high computational power or expensive 

software. The system can be transferred and adjusted to other administrative districts of Armenia 

to provide full coverage. The limitations of the typological detail of the classes and interpreter 

bias related to the collection of training and validation data were largely overcome trough a 

comprehensive sampling scheme. This could be further improved with additional data or field 

assessments. 

The LULC data produced in this study is rather technocratic and the knowledge generation 

took place distant to the local communities which potentially contributes to a feeling of exclusion. 

Therefore, it is of importance to combine these results with studies investigating the needs of 

smallholders and rural communities as well as the values they associate and perceive in respect 

to ecosystem services. Community led projects in Armenia such as the “Arpa Protected 

Landscape” can be a mean to empower local smallholders to actively contribute to conservation 

management and monitoring. Detailed LULC data is likely to be a valuable tool for such projects. 

Geodata processing and remote sensing applications are becoming more accessible for a broader 

spectrum of users due to cloud computing, open access data and available freeware. This also 

bears some potential for local authorities and specialists to further develop and apply the 

proposed mapping approach of this study. 
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Appendix 

Appendix I Normalized difference indices and spectral transformation with formula and description. The spectral derivates where 
calculated and used within the construction of the various RF input datasets. 

Derivate name Formula Description 

Normalized difference vegetation 

index (NDVI) 
𝑁𝐷𝑉𝐼 =

(𝑛𝑖𝑟 − 𝑟𝑒𝑑)

(𝑛𝑖𝑟 + 𝑟𝑒𝑑)
 

Highly associated with vegetation 
content, canopy structure/LAI; for 
discrimination of healthy and dense 
vegetation; sensitive to shadow, edaphic 
and atmospheric effects; (Rouse et al., 
1973) 

Enhanced vegetation index (EVI) 
𝐸𝑉𝐼 = 2.5 ∗ [

(𝑛𝑖𝑟 − 𝑟𝑒𝑑)

(𝑛𝑖𝑟 + 6 ∗ 𝑟𝑒𝑑 − 7.5 ∗ 𝑏𝑙𝑢𝑒 + 1)
] 

Vegetation Index which simultaneously 
corrects for atmospheric and edaphic 
effects (de-coupling from canopy 
background) (Huete et al., 1997) 

Normalized difference moisture 

index (NDMI) 
𝑁𝐷𝑀𝐼 =

𝑛𝑖𝑟 − 𝑠𝑤𝑖𝑟1

𝑛𝑖𝑟 + 𝑠𝑤𝑖𝑟1
 

Associated with plant water stress; 
sensitive to vegetation water content; 
(Gao, 1996) 

Modified (secondary) soil-

adjusted vegetation index 

(MSAVI2) 

𝑀𝑆𝐴𝑉𝐼2 = 0.5 ∗ [(2𝑛𝑖𝑟 + 1)

− √(2𝑛𝑖𝑟 + 1)2 − 8(𝑛𝑖𝑟 − 𝑟𝑒𝑑) 

Corrected for changes in the background 
caused by soil colour or surface soil 
moisture content; (Richardson and 
Wiegand, 1977) 

Tasseled cap (TC) transformation  

(with adjusted coefficients for S2) 

𝑊𝑒𝑡𝑛𝑒𝑠𝑠 = (𝑏𝑙𝑢𝑒 ∗ 0.2578) + (𝑔𝑟𝑒𝑒𝑛 ∗ 0.2305) +

(𝑟𝑒𝑑 ∗ 0.0883) + (𝑛𝑖𝑟 ∗ 0.1071) + (𝑠𝑤𝑖𝑟1 ∗ −0.7611) +

(𝑠𝑤𝑖𝑟2 ∗ −0.5308)  

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 = (𝑏𝑙𝑢𝑒 ∗ 0.3510) + (𝑔𝑟𝑒𝑒𝑛 ∗ 0.3813) +

(𝑟𝑒𝑑 ∗ 0.3437) + (𝑛𝑖𝑟 ∗ 0.7196) + (𝑠𝑤𝑖𝑟1 ∗ 0.2396) +

(𝑠𝑤𝑖𝑟2 ∗ 0.1949) 

𝐺𝑟𝑒𝑒𝑛𝑒𝑠𝑠 = (𝑏𝑙𝑢𝑒 ∗ −0.3599) ∗ (𝑔𝑟𝑒𝑒𝑛 ∗ −0.3533) +

(𝑟𝑒𝑑 ∗ −0.4734) + (𝑛𝑖𝑟 ∗ 0.6633) + (𝑠𝑤𝑖𝑟1 ∗ 0.0087) +

(𝑠𝑤𝑖𝑟2 ∗ −0.2856)  

Conversion of the original image bands 
into a new set of bands in a four-
dimensional feature space; the TC 
components represent properties of 
terrestrial reflectance associated with a 
number of biophysical parameters, such 
as brightness with albedo, greenness 
with vegetation, and wetness with soil 
moisture; sensor-specific coefficients; 
(Kauth and Thomas, 1976; Shi and Xu, 
2019) 

Normalized difference water 

index (NDWI) 
𝑁𝐷𝑊𝐼 =

𝑔𝑟𝑒𝑒𝑛 − 𝑛𝑖𝑟

𝑔𝑟𝑒𝑒𝑛 + 𝑛𝑖𝑟
 Delineation of open water features 

(McFeeters, 1996) 

Modified normalized difference 

water index (MNDWI) 
𝑀𝑁𝐷𝑊𝐼 =

𝑔𝑟𝑒𝑒𝑛 − 𝑠𝑤𝑖𝑟1

𝑔𝑟𝑒𝑒𝑛 + 𝑠𝑤𝑖𝑟1
 

Delineation of open water features with 
correction for noise of land and urban 
features and structures (Xu, 2006) 

Bare soil index (BSI) (adjusted) 

𝐵𝑆𝐼 = (
(𝑟𝑒𝑑 + 𝑠𝑤𝑖𝑟2) − (𝑏𝑙𝑢𝑒 + 𝑛𝑖𝑟)

(𝑟𝑒𝑑 + 𝑠𝑤𝑖𝑟2) − (𝑏𝑙𝑢𝑒 + 𝑛𝑖𝑟)
) 

Associated with bare soil; highlights 
difference between agricultural and 
non-agricultural land; originally with 
swir1; adjusted to swir2; (Rikimaru, Roy 
and Miyatake, 2002; Diek et al., 2017) 

Normalized difference built-up 

area index (NBAI) 
𝑁𝐵𝐴𝐼 =

𝑠𝑤𝑖𝑟2 − 𝑠𝑤𝑖𝑟1/𝑔𝑟𝑒𝑒𝑛

𝑠𝑤𝑖𝑟2 + 𝑠𝑤𝑖𝑟1/𝑔𝑟𝑒𝑒𝑛
 

Separation of bare and urban areas; 
(Waqar et al., 2012; Valdiviezo-N et al., 
2018) 

Index-based built-up index (IBI) 
𝐼𝐵𝐼 =

[𝑁𝐷𝐵𝐼 − 𝑆𝐴𝑉𝐼 + 𝑀𝑁𝐷𝑊𝐼/2]

[𝑁𝐷𝐵𝐼 + 𝑆𝐴𝑉𝐼 + 𝑀𝑁𝐷𝑊𝐼/2]
 

Major urban components of vegetation, 
water and built-up land for urban 
feature extraction (Xu, 2008) 
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Appendix II Detailed description of the collection framework for the training data.  

The GEE sample collection framework has been constructed primarily with Sentinel-2 MSI 

Level-2A data. Besides cloud free multi-temporal median composites (2 month) of the 

phenological period of 2019, a greenest pixel quality composite based on a derived NDVI time 

series of the entire year was included. The median composite time series was displayed as true- 

and false-color composites. Due to spectral differences between two consecutive composites a 

detection of management signals such as ploughing or mowing was possible in order to identify 

associated classes such as field crops or hay meadows. The greenest pixel quality composite 

consists of the max NDVI values per pixel for a given time period (here: one year). It was visualized 

with a color palette from yellow to green with low max NDVI’s displayed in yellow and high values 

displayed in green. The greenest pixel composite was useful in order to discriminate areas with 

bare ground or sparse vegetation. A pansharpened summer composite, elevation zones following 

the altitudinal zonation and unsupervised cluster maps of a median composite for summer and a 

bi-seasonal layerstack of a median composite for both summer and spring complemented the 

framework. The unsupervised cluster results were barely used but gave a good impression about 

spectral similarity. The elevation zones helped to rule out some classes and the pansharpened 

image enhanced the visual impression of e.g. urban structures.  

The time series framework is based on a prepared GEE script (Yin, 2018). It is thought of as 

a tool for plotting NDVI, BSI and Tasseled Cap transformation (brightness, greenness and wetness) 

time series from Landsat surface reflectance and Sentinel 2 top-of-atmosphere as well as for 

visual interpretation of cloud-free Landsat surface reflectance imagery. Besides the time series 

plots for the mentioned derivates the script creates four windows for visual observations with: 

(1) Google Earth imagery, (2) the least clouded imagery for an early phenological period (i.e. 

spring) (3) the least clouded imagery for a late phenological period (i.e. summer) and (4) the least 

clouded imagery for the whole phenological period. The start and end dates for the different 

periods can be individually set by the user. The time series charts in Appendix III were generated 

using this framework. 

Appendix III illustrates the agricultural target classes with components of the sampling 

framework with: (1) a Google Earth VHRS composite (2019), (2) two Sentinel-2 seasonal 

composites for spring and summer and (3) a time series plot based on the NDVI of Landsat and 
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Sentinel-2. The grassland area is situated in the subalpine zone and shows a livestock station for 

the summer used by the transhumance pastoralists close to Jermuk in Vayots Dzor (Appendix III, 

a). The difference between the false color composite of spring and summer displays and even 

brightening due to the natural senescence of the herbaceous vegetation. Because of the altitude 

the phenological period starts quite late (May-June). In general, it shows a harmonic behavior 

with a greening phase maximum values around July and a ripening phase. It does not display a 

harvest signal and minimum values are above a NDVI of 0.2. The area for hay meadows is situated 

in a subalpine valley close to Tatev in Syunik (Appendix III, b). In the VHSR image of Google Earth 

harvested or mowed areas are visible. This is also displayed by the difference of the seasonal 

Sentinel-2 composites for spring and summer. Here the brightening is stronger for the harvested 

areas. Since no ploughing signal was detected for most of the harvested fields it seems to be 

mowed meadows. This is confirmed by a close look at the time series. It shows relatively high 

minimum values and no ploughing signal. The presence of a mowing signal is shown by a disturbed 

senescence. The area of improved meadows i.e. meadows which are irrigated and mowed more 

than once is located in the Arpa valley close to Yeghegnadzor (Appendix III, c). The VHSR and the 

seasonal false color composites display the persistent greenness of the meadows. This can be also 

observed by looking at the time series exhibiting consistently high NDVI values with some sudden 

drops associated with multiple mowing events. 

Area d) in Appendix III shows crop fields close to Goris. The field crops show both a 

harvesting and a ploughing signal that can be observed by inspecting both the seasonal false color 

composites and the time series charts. Field crops exhibit very low minimum NDVI values and a 

ploughing signal can be quite pronounced. The site for vine yards is also located near 

Yeghegnadzor and is part of an extensive grape production area (Appendix III, e). Vine yards were 

mainly identified by the row structure. However, irrigated vine yards also exhibit a strong grass 

signal with high NDVI values over the whole phenological period. The grass signal is accompanied 

with the woody vegetation signal from the vines. The exemplary area of fruit orchards is situated 

in an arid mountain valley close to the Yeghegis state sanctuary (Appendix III, f). The more or less 

systematic structure of the orchards can be observed on the Google Earth VHRS. Within the more 

arid parts of the study region (Vayots Dzor) the orchards are also irrigated. As a function of the 

orchard density the tree signal is associated with a grass signal which may also show signs of 
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mowing management. Due to the high spatial and temporal resolution the VHSR imagery of the 

Planet Lab archive was in addition very useful for the detection of ploughing and mowing signals. 

Appendix IV illustrates the visual signal for both management practices. In combination with the 

time series framework and the GEE framework agricultural management could be identified 

successfully, even for small patch sizes. 

 

Appendix III Illustration of the GEE training sample collection framework. 
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Appendix IV Visual signals as observed from the VHSR imagery in Planet explorer. a) ploughing signal and b) mowing signal. 
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Appendix V Acquired user’s accuracy estimates of different publications. The estimates serve as broad indication of likely class 
specific accuracies for the estimation of validation sample sizes with the FAO spreadsheet. 

LULC Class User’s Accuracies Publications 

Grassland/ potential 

pastures 

88%; 50%;76%; 84.7% (Das and Das, 2014); (Prishchepov et al., 2012); (Schlaffer and 

Harutyunyan, 2018) (Senf et al., 2015); 

Hay meadows 60%; 74-88%; 57-

69%2; 95%; 73%-91%; 

77% 

(Dusseux et al., 2014); (Estel et al., 2018); (Franke, Keuck and Siegert, 

2012); (Prishchepov et al., 2012); (Halabuk et al., 2015); (Kolecka et 

al., 2018);  

Improved meadows 87.2%3  (Pareeth et al., 2019) 

Field crops 80%; 53-100%; 
72/88%; 93.8%; 43%; 
88.4% 

(Das and Das, 2014); (Phalke et al., 2020);  (Pareeth et al., 2019); 

(Prishchepov et al., 2012); (Schlaffer and Harutyunyan, 2018); (Senf 

et al., 2015) 

Vine yards 85% (Griffiths, Nendel and Hostert, 2019) 

Fruit orchards 70-100%; 95%4; 

88.6% 

(Brinkhoff, Vardanega and Robson, 2020); (Das and Das, 2014); 
(Pareeth et al., 2019) 

Shrubland 50%; 50%; 43% (Prishchepov et al., 2012); (Senf et al., 2015); (Schlaffer and 

Harutyunyan, 2018) 

Forest 75%; 96.1%; 88%; 
66% 

(Griffiths, Nendel and Hostert, 2019); (Prishchepov et al., 2012); 

(Schlaffer and Harutyunyan, 2018) ; (Senf et al., 2015) 

Bare/ sparse vegetation 95.8%/ 88.2%; 63%; 
65% 

(Pareeth et al., 2019); (Schlaffer and Harutyunyan, 2018); (Senf et al., 

2015) 

Water 85%; 85% (Griffiths, Nendel and Hostert, 2019); (Schlaffer and Harutyunyan, 

2018) 

Urban  75-80%; 96%; 86% (Griffiths, Nendel and Hostert, 2019); (Pareeth et al., 2019); (Schlaffer 

and Harutyunyan, 2018) 

 
  

 

2 For different mowing intensity classes. 
3 Irrigated agriculture class used for imroved irrigated meadows. 
4 For homegardens.  
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Appendix VI Different validation sample allocations with varying optimism regarding the accuracy estimates obtained from the 
review (see Appendix V). U is the assumed user’s accuracy of each class and n is the required sample size. 

LULC Class Alloc1 

Ui 

 

ni 

Alloc2 

Ui 

 

ni 

Alloc3 

Ui 

 

ni 

Grassland/ potential pastures 0,90 680,25 0,80 1238,43 0,70 1522,70 

Hay meadows 0,85 43,41 0,80 79,03 0,75 97,17 

Improved meadows 0,80 2,80 0,70 5,09 0,80 6,26 

Field crops 0,80 13,06 0,80 23,78 0,80 29,24 

Vine yards 0,80 7,80 0,80 14,20 0,80 17,46 

Fruit orchards 0,80 14,76 0,60 26,87 0,60 33,04 

Shrubland 0,90 123,99 0,50 225,72 0,50 277,53 

Forest 0,90 15,04 0,90 27,38 0,80 33,66 

Bare/ sparse vegetation 0,90 31,33 0,80 57,03 0,80 70,13 

Water 0,90 1,41 0,90 2,57 0,85 3,17 

Urban  0,95 4,56 0,70 8,31 0,80 10,21 

Total  938,41  1708,42  2100,57 
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Appendix VII Advocated allocations of validation samples per class strata, the assumed user’s accuracies and the associated 
standard errors for both sub-regions. 

  Vayots Dzor  Sisisan-Goris  

LULC Class Assumed UA Sample size 
Standard 

error 
Sample size 

Standard 

error 

Grassland/ potential 

pastures 

90% 690 1.14% 660 1.97% 

Hay meadows 80% 200 2.84% 200 2.84% 

Improved meadows 70% 150 3.75% 150 3.75% 

Field crops 80% 200 2.84% 200 2.84% 

Vine yards 80% 200 2.84% n.d. n.d. 

Fruit orchards 60% 200 3.47% 200 3.47% 

Shrubland 50% 200 3.54% 150 4.1% 

Forest 90% 70 3.61% 80 3.38% 

Bare/ sparse 

vegetation 

80% 80 4.5% 90 4.24% 

Water 90% 50 4.29% 60 3.91% 

Urban 70% 60 5.96% 70 5,52% 

Total  2100  1860  

 

 

Appendix VIII Descriptions of easy and difficult cases during the flagging process of the response design within the validation 
sampling protocol. 

Easy decisions have been the case for the forest class where the assessment units have been 

largely homogeneous. However, already for water and urban also some difficult cases have been 

faced regarding mixed pixels. Further, difficulties emerged for cases where the unit was not 

unambiguously a member of one of the defined discrete class options but rather in between of 

two classes. This is because land-cover is a continuum with transition zones and the 

representation of this continuum is generally done on a discrete scale (see Appendix XVIII). The 
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discrete class issue has been in particular the case for the classes bare and sparse vegetation, 

grassland and shrubland. In these cases, a definition of value thresholds and visual thresholds (i.e. 

proportions of pixel content) was necessary in order to agree on a consistent labeling process. 

In the case of bare surfaces and sparse vegetation a greenest pixel quality composite based 

on a Sentinel2 NDVI time series for the year 2019 served as threshold source. Here a maximum 

NDVI threshold of 0.35 and 0.2 have been determined for Sisian-Goris and Vayots Dzor 

respectively (see Appendix XIX). The threshold where defined prior to the training sampling and 

have been derived from an initial assessment of greenest pixel values in different bare and 

sparsely vegetated areas. For the continuum of grass and shrubland and for other discrete classes 

such as urban or water coverage threshold of the assessment unit have been defined expressed 

by the coverage proportion. In the case of urban fabric, the threshold was below 50% due to the 

intensive spectral signal of this class (see Appendix XIX). Water was assigned with a threshold 

around 50% coverage of the MMU. The grassland and shrubland continuum was allocated with 

unit coverage threshold of 60-70% (see Appendix XIX).  

 

Appendix IX Grassland shrubland continuum. 
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Appendix X Ambiguous cases of for the urban (a), the water (b) and the bare class (c). 
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Appendix XI Classified map illustrating seven different landscapes considered for the calculation of Moran’s I marked with points. 
The sub-sets exhibit distinct environments with varying land-use and land cover types found in the mountainous area. Some of the 
areas exhibit a more heterogenous distribution of classes (ROI 2, 5 & 6) whereas other parts show the presence of large clusters of 
agricultural fields (ROI 7) or natural grassland (ROI 4). In the mountain valleys of Vayots Dzor and in settlements clusters of vine 
yards and fruit orchards are apparent (ROI 1) (source: own illustration). 

 
 
Appendix XII Example of a basic 4x4 error matrix with four different classes (Olofsson et al., 2014). 

  Reference     

  Class 1 Class 2 Class 3 Class 4 Total 

Map Class 1 𝑝11  𝑝12  𝑝13  𝑝14  𝑝1∙  

 Class 2 𝑝21 𝑝22 𝑝23 𝑝24 𝑝2∙ 

 Class 3 𝑝31 𝑝32 𝑝33 𝑝34 𝑝3∙ 

 Class 4 𝑝41  𝑝42  𝑝43  𝑝44  𝑝4∙  

 Total 𝑝∙1 𝑝∙2 𝑝∙3 𝑝∙4 1 
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Appendix XIII Knowledge capture of the spectral-temporal NDVI characteristics of the agricultural and semi-natural LULC classes 
for Sisian-Goris. (a) the box- and whisker-plots for the spectral-temporal metrics, and (b) the monthly time series as line chart. The 
outliers in the box-plots are depicted as grey dots. 
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Appendix XIV Knowledge capture of the spectral-temporal characteristics of the agricultural and semi-natural LULC classes for 
Vayots Dzor. With spectral-temporal metrics of (a) the NIR band; (b) the SWIR1 band; (c) the SWIR2 band; and (d) the EVI. 
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Appendix XV Knowledge capture of the spectral-temporal characteristics of the agricultural and semi-natural LULC classes for 
Vayots Dzor. With spectral-temporal metrics of (a) the NDMI; and (b) the MSAVI2. 
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Appendix XVI Knowledge capture of the spectral-temporal BSI characteristics of the agricultural and semi-natural LULC classes 
for Sisian-Goris. (a) the box- and whisker-plots for the spectral-temporal metrics, and (b) the monthly time series as line chart. 
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Appendix XVII Time series of the NIR band, the MSAVI2 and the VH composites for the agricultural and semi-natural classes in 
Vayots Dzor. 
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Appendix XVIII RF feature importance of the “good choice” classification for Vayots Dzor. 
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Appendix XIX Sample count-based error matrix with area-adjusted accuracy estimates of the baseline classification for the 11 
classes of Vayots Dzor 

 

Appendix XX Sample count-based error matrix of baseline classification with accuracy estimates and associated standard errors 
for Sisian-Goris. 

  

    GL HM IM FC FO SL WL SP W U ∑ 
UA 
(%) 

± 

Map GL 656 31 5 21 21 22 0 12 2 13 783 83,78 1,34 

  HM 36 234 5 14 2 1 0 0 0 0 292 80,14 2,36 

  IM 12 6 88 12 5 3 0 0 0 0 126 69,84 4,01 

  FC 17 12 2 216 2 1 0 3 0 0 253 85,38 2,05 

  FO 2 3 17 5 88 12 4 0 0 1 132 66,67 3,54 

  SL 29 1 15 12 47 156 10 1 1 3 275 56,73 3,35 

  WL 0 0 0 0 4 18 79 0 0 0 101 78,22 4,30 

  SP 3 0 0 4 0 1 0 66 0 6 80 82,50 4,05 

  W 1 0 0 2 1 3 0 0 60 0 67 89,55 3,88 

  U 3 0 0 12 8 3 0 7 0 58 91 63,74 5,38 

  ∑ 759 287 132 298 178 220 93 89 63 81 2200   

  
PA 
(%) 

95,55 69,75 8,15 74,83 14,69 55,23 91,76 71,60 72,21 24,17 
  

OA 
(%) 

± 

 ± 0,03 0,35 1,87 0,50 0,86 1,42 1,03 0,96 4,52 3,28  81,51 0,98 

 

  

    Reference                      

    GL HM IM FC VY FO SL WL SP W U ∑ 
UA 
(%) 

± 

Map GL 563 20 5 32 14 8 34 0 4 1 10 691 81,48 1,49 

  HM 27 179 2 9 0 1 1 0 0 0 0 219 81,74 2,68 

  IM 2 4 92 1 24 12 3 0 0 0 0 138 66,67 3,56 

  FC 15 3 10 117 15 2 0 0 1 0 0 163 71,78 3,27 

  VY 0 0 3 2 92 5 3 0 0 0 0 105 87,62 2,16 

  FO 2 1 54 9 54 144 9 2 0 0 2 277 51,99 3,43 

  SL 62 1 10 11 19 28 165 7 1 5 4 313 52,72 3,31 

  WL 0 0 0 0 0 5 7 61 0 0 1 74 82,43 4,58 

  SP 4 1 0 3 0 0 0 0 59 2 4 73 80,82 4,81 

  W 1 0 0 0 0 1 2 0 0 45 0 49 91,84 3,76 

  U 9 0 0 6 15 7 5 0 3 1 58 104 55,77 5,62 

  ∑ 685 209 176 190 233 213 229 70 68 54 79 2206   
 

  
PA 
(%) 

94,28 66,59 14,40 20,19 22,51 24,73 63,59 81,41 84,39 26,81 17,59 
  

OA 
(%) 

± 

 ± 0,03 0,60 2,15 0,68 1,22 2,00 0,45 3,01 0,83 18,18 2,79  77,15 1,18 
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Appendix XXI Bar chart illustrating the differences of the user’s accuracies between the different RF models for Vayots Dzor and 
all LULC classes. The standard error estimates are added as whiskers. 
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Appendix XXII Bar chart illustrating the differences of the user’s accuracies between the different RF models for Sisian-Goris and 
all LULC classes. The standard error estimates are added as whiskers. 

’ 


